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Abstract

This research extends the theory and understanding of the laser speckle imag-

ing technique. This non-traditional imaging technique may be employed to improve

space situational awareness and image deep space objects from a ground-based sensor

system. The use of this technique is motivated by the ability to overcome aperture

size limitations and the distortion effects from Earth’s atmosphere.

Laser speckle imaging is a lensless, coherent method for forming two-dimensional

images from their autocorrelation functions. Phase retrieval from autocorrelation data

is an ill-posed problem where multiple solutions exist. This research introduces po-

larization diversity as a method for obtaining additional information so the structure

of the object being reconstructed can be improved. Results show that in some cases

the images restored using polarization diversity are superior to those reconstructed

without it.

This research presents statistical analysis of the observed data, two distinct

image recovery algorithms, and a Cramer-Rao Lower Bound on resolution. A math-

ematical proof is provided to demonstrate the statistical properties of the observed,

noisy autocorrelation data. The algorithms are constructed using the Expectation-

Maximization approach and a polarization parameter that relates two independently

observed data channels. The algorithms are validated with computer simulation and

laboratory experiment. Comparison is made to an existing phase-retrieval technique.

The theoretical lower bound is developed for comparing theoretical performance with

and without polarization diversity. The results demonstrate the laser speckle imaging

technique is improved with polarization diversity.
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Statistical Image Recovery From Laser Speckle Patterns

With Polarization Diversity

I. Introduction

Synthetic aperture Laser Detection and Ranging (LADAR) imaging is investi-

gated in this research. This research provides an improved phase retrieval algorithm

for recovering remotely sensed objects from non-imaged, laser-speckle, intensity data.

The innovative aspects investigated as part of this effort include the addition of po-

larization diversity and a statistical approach to object recovery that improves upon

existing techniques. Improvement is demonstrated via computer simulation, labora-

tory experiment, and a theoretical bound on resolution. This work is a continuation

of previous research efforts [3, 31–33].

Fundamentally, the Department of Defense desires cost savings and improved

image resolution beyond what can be achieved with existing optical reconnaissance

systems. In general, with larger apertures, greater diffraction-limited, resolution is

achieved. There are applications, such as space-borne sensors, where optical imaging

is preferred; however, the size of the optic is limited by weight and cost constraints.

Practically, for a satellite system, weight and cost savings can be achieved at the

expense of power and computer processing. Weight and cost savings can potentially

be achieved with large, synthetic apertures without a focusing lens. Large, synthetic

apertures designed with many light-weight and relatively inexpensive detector ele-

ments save production expense and weight compared with large, monolithic optical

elements found in traditional optical systems. Ideally, an even larger overall aperture

can be synthesized with many small elements as compared to a cost equivalent optical

system.
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Along with cost savings, the goal is to improve upon available image resolution

and overcome detection and atmospheric noise. For ground-based sensors looking sky-

ward, large optical systems are developed; however, the Earth’s atmosphere severely

limits performance. It will be shown in this dissertation that laser speckle imaging

without optics in ground systems avoids the effect of imaging through atmospheric

turbulence at the aperture. Turbulence effects are not observed because the per-

turbed phase information is completely destroyed in the collection process [3, 44].

Only scintillation effects due to layered atmosphere above the aperture plane need be

considered [44]. However, without the object phase information we must estimate the

phase leading to the classical phase retrieval problem discussed later in this document.

This chapter introduces the dissertation research and its documentation. The

operational motivation for conducting the research is first provided in Section 1.1.

Technical motivation for this research is provided in Section 1.2. This is followed by

a summary of Research Contributions in Section 1.3. The chapter concludes with a

Dissertation Overview in Section 1.4.

1.1 Operational Motivation

Accurate and reliable Space Situational Awareness (SSA) is an important re-

quirement for the United States Air Force. General C. Robert Kehler, Commander,

Air Force Space Command, in a speech to the Air Force Association in November

2007 said,

“...a critical important thing for us and that is to get better at space
situational awareness. That’s one of our top priorities in the command.
It’s going to remain one of our top priorities on my watch. And leaders
flat simply have got to get better about knowing what’s up there, tracking
what’s up there, understanding the intent of things that are up there, and
knowing those pieces in real time.” [27]

The space environment continues to be more complex due to increased on-orbit sys-

tems as well as debris. The United States must monitor all on-orbit systems and debris

for safeguarding and positive control. The SSA mission demands timely knowledge
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of debris and orbiting systems over a vast region of space. SSA dictates highly sen-

sitive systems track small objects at high orbit round the clock. With ground based

systems, large telescopes are often limited by weather and atmospheric conditions.

The fielding of large optical systems with sensitive pointing control mechanisms are

extremely costly. It would be beneficial to augment existing assets with less expen-

sive apertures that provide equivalent or better resolution. If less expensive systems

could be fielded, additional coverage and surveillance capability can be deployed with

limited defense budgets.

In addition to SSA, persistent surveillance from space continues to be an emerg-

ing area of need. A broad range of military and non-military applications dictate per-

sistent, on-going image collection with large service times. Atmospheric turbulence is

not a limiting factor for space-borne sensors. However, aperture size and service time

limit capability. Applications ranging from reconnaissance to geological, environmen-

tal, and agricultural surveys require persistent coverage. Improvement in satellite

imagery resolution is demanded and this could theoretically be achieved at higher or-

bits to include geostationary orbit. It is proposed that large, light-weight, synthetic

apertures hosted on multiple micro-satellites can bring about improved resolution

at higher orbits with less cost and launch weight. Because of these proposals, laser

speckle non-optical imaging is revisited for this research. The next section provides

an technical overview of speckle formation with an idealized scenario.

1.2 Technical Motivation

The following idealized scenario is considered: A monochromatic laser uniformly

illuminates a distant object producing a reflected field at the observation plane. The

illuminating field is assumed to be either constant or Gaussian in amplitude and may

be perturbed and attenuated by propagation effects. The reflected field is observed

with either a lens system (Fig. 1.1) or a detector array without a focusing lens

(Fig. 1.2). The technique of detecting the reflected laser light with a detector array

without a lens has been referred to by several names throughout the literature. It
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has been described as pupil plane imaging, lensless coherent imaging, non-imaged

laser-speckle, and image correlography. The last term refers to the correlogram (or

object autocorrelation) that can be formed from the speckle pattern [44].

Figure 1.1: Diagram of Laser-Speckle Imaging

Figure 1.2: Diagram of Lensless Laser-Speckle Imaging [44]

This scenario involves illumination with a coherent source. The reflected laser

light, when observed, produces a high-contrast, granular, “speckle” pattern directly

related to the roughness of the object surface. Speckle formation is observed in many

applications to include synthetic-aperture radar, ultrasound medical imaging, and co-

herent, visible light imaging [19]. Figure 1.3 demonstrates an example speckled image

(A) and an example non-imaged, laser speckle pattern (B). The observed speckle in-

tensity pattern is different for observations with lens and lensless systems. The laser

speckle observed by a lens system is essentially a noisy, grainy image as demonstrated

4



A B

Figure 1.3: Example Speckle: [A] Image Formed with Coherent Illumination, [B]
Non-imaged Laser Speckle Pattern

by Fig. 1.3A. However, the laser speckle pattern produced by a lensless system has

no visible connection to the object and just appears as a random pattern as demon-

strated by Fig. 1.3B. This random pattern, while not an image of the original object,

does contain information about the object embedded in the statistical nature of the

speckle pattern. This speckle effect is not observed when the illumination source is

incoherent. With incoherent illumination, speckle is not observed because the very

nature of incoherent light removes the constructive and destructive interference ef-

fects. Often, speckle is a nuisance and must be suppressed or removed; however, this

research further investigates the use of laser speckle patterns for object recovery in

LADAR remote sensing applications.

In this research, we consider the coherent illumination and free-space propa-

gation geometry depicted in Fig. 1.4. The lensless detector array is placed at the

observation plane (or pupil plane). The observed speckle pattern occurs when the

reflecting surface roughness is on the order of the illuminating wavelength. We can

consider the Huygens-Fresnel principle to explain this phenomenon. Every point

on the reflecting surface is a unique point source contributing to or interfering with

the overall wavefront. Due to the relative reflectivity and path differences, each re-

flecting point source produces random, additive phase contributions to the reflected

wavefront. These random contributions serve to create constructive and destructive
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interference leading to the observed speckle pattern. The statistical properties of the

speckle depend upon the coherence of the illuminating light and the random proper-

ties of the surface and transmission medium [6]. Therefore, the observed intensity of

the reflected field is directly related to the reflecting object.

Figure 1.4: Laser Speckle Geometry [16]

A primary technical motivation for considering the correlography technique is

the ability to collect object information without the blurring effects of the atmosphere.

This will be further discussed in Section 1.2.2. Next we detail the mathematical model

under consideration for the idealized scenario.

1.2.1 Basic Mathematical Model. The electric field at the object is excited

by an ideal, single-mode laser with a purely monochromatic oscillator with known

amplitude S, known frequency ν, time t, and unknown but absolute phase ϕ. We

will assume the laser beam is linearly polarized. This single-mode laser light scenario,

detailed by Goodman [17], is modeled as a random process that is both stationary

and ergodic. The signal in this ideal scenario is represented by

u(t) = S cos[2πνt− ϕ]. (1.1)

The starting point with this simple model assumes a constant amplitude during the

duration of the pulse and a constant phase associated with a sufficiently long coherence

time of the laser.
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Using scaler theory and complex notation, we consider random contributions

from a large number, N , of independent scattering sources. Specifically, at a point

on the observation plane, the complex field is the result of a random phasor sum.

The mathematics of the random phasor sum found in optics is covered extensively

by Goodman [17]. Equation 1.2 describes the random phasor sum where αk is the

random amplitude and θk is the random phase of the kth phasor:

aejφ =
1√
N

N∑

k=1

αke
jθk . (1.2)

The monochromatic illumination produces a field distribution dependent upon

the laser beam distribution and object reflectivity. The reflected object field, f(x),

at the object plane is described with complex notation as:

f(x, t) = a(x, t) · ejφ(x), (1.3)

where x = (x, y) is a two dimensional coordinate vector in the object plane, a(x) is

the object field amplitude related to the object surface reflectivity, and φ(x) is the

phase directly related to the object surface height profile. Because of object surface

roughness, the reflected phase is modeled as uniformly distributed, ∼ U [−π, π]; φ(x1)

and φ(x2) are independent. This produces a random phasor sum at the detector

plane [17,19]. For the proposed LADAR system, it is assumed the reflected laser pulse

is integrated (summed) at the detector system for the entire pulse width. Possible

pulse width changes and effects due to oblique reflection angles are ignored.

If slight changes to the geometry and environment for each laser pulse are con-

sidered, the object field f(x, t) becomes a random process. The illuminating laser

may move slightly, the atmosphere may change the illuminating laser light propa-

gation from pulse to pulse, and the object may move slightly. Slight geometry and

environment changes produce a unique reflected field for each laser pulse. Therefore,
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the reflected field can be described in statistical terms. Eqn. 1.4 demonstrates the

expected value of the reflected field is zero, where E[·] is the Expected Value operator.

E[f(x, t)] = E[a(x, t)ejφ(x)]

= a(x, t) · E[ejφ(x)]

= a(x, t) ·
∫ π

−π

1

2π
[ cosφ(x) + j sinφ(x) ]dφ

= a(x, t) · 0

= 0 (1.4)

The autocorrelation of the object field is detailed in Eqn. 1.5 where a2(x) = o(x) is the

incoherent object intensity or brightness function and δ(x) is Dirac’s delta function.

The expected value operator in Eqn. 1.5 is zero everywhere except when φ(x1) = φ(x2)

because statistical independence in the phase at each spatial point on the object

surface is assumed. The reflected field is described as a circular Gaussian process

which provides some unique properties when studying the laser speckle patterns in

the observation plane.

E[f(x1, t)f
∗(x2, t)] = E[a(x1, t)e

jφ(x1)a(x2, t)e
−jφ(x2)]

= a(x1, t)a(x2, t) · E[ejφ(x1)e−jφ(x2)]

= a(x1, t)a(x2, t) · δ(x1 − x2)

= o(x1) · δ(x1 − x2) (1.5)

The reflected field at the observation plane, F (u, v), in the far field or Fraunhofer

region is related to the object field by the scaled Fourier Transform [18]. This is

described in Eqn. 1.6 where k = 2π/λ is the wave number, λ represents the optical
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wavelength of the monochromatic laser and z represents the propagation distance

between the object and the observation plane.

F (u, v) =
ejkzej

k
2z

(u2+v2)

jλz

∫
∞

−∞

∫
∞

−∞

f(x, y) exp{−j 2π
λz

(xu+ yv)}dxdy (1.6)

At optical wavelengths the electric field cannot be observed directly; however,

the optical power or intensity can be measured via optical detectors. Following Good-

man’s framework, the intensity is defined as the squared modulus of the analytic signal

representation of the field [17,18]. The intensity at the observation plane is described

by

I(u) = |Fλz{f(x)}|2 (1.7)

where Fλz is the two-dimensional, scaled Fourier Transform detailed in Eqn. 1.6.

I(u) is corrupted by speckle noise due to the random phasor sum produced by the

object surface roughness. Note that Eqn. 1.7 describes the modulus squared of the

Fourier Transform of the field distribution which is related to the field autocorrelation,

Rf (x0), via the Fourier Transform due to the Autocorrelation Theorem [18]:

| F{f(x)} |2 = F{Rf (x0)}. (1.8)

Unfortunately, the complete spectrum cannot be observed due to noise and the finite

extent of our detection systems. The observed, speckled intensity data, Io(u), is

modeled as

Io(u) = [I(u) + n(u)] · A(u) (1.9)
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where n(u), photon or shot noise, is a zero mean noise such that the observed in-

tensity (conditioned on the average photon values) has a Poisson distribution with a

mean equal to the intensity without photon noise. This noise is introduced by the

random arrival time of the photons emerging from the electric field onto the detec-

tor. The mean intensity, observed in photon counts, is itself a random process with

an exponential distribution [17]. A(u) is the aperture function denoting the region

where the speckle pattern is physically recorded; A(u) = 1 for the points within the

measurement aperture and A(u) = 0 elsewhere. Without a traditional lens aperture,

the detector array is itself the limiting aperture capturing a finite portion of the re-

flected field. For systems designed to recover an image of the original object from

the observed laser speckle, it is important the laser speckle images are statistically

independent. Practically, this condition is easily achieved.

To complete the description of the idealized scenario, a few additional assump-

tions and limitations must be explored. This non-imaged laser speckle scenario can be

considered without atmospheric disturbance or where the atmospheric turbulence is

modeled as a phase screen directly over the remote object. Each pupil plane detector

observes a beam limited scenario with the array producing a single laser speckle im-

age per pulse. This non-imaged pupil plane intensity is observed over a large number

of laser pulses. The observation period for each laser pulse is assumed to be within

the coherence time of the laser. In addition, background light is assumed to be com-

pletely filtered out and only the reflected laser light is observed. The detector array

is sufficiently in the far-field for the Fraunhofer approximation to hold. The pupil

plane array is considered perpendicular to the object plane. The pupil plane and the

object is fixed during the observation period with sufficiently minor changes pulse to

pulse to create statistically independent laser speckle patterns.

1.2.2 Atmospheric Effects on Laser Speckle Imaging. Imaging and optical

propagation through turbulent medium has been extensively studied [1, 35]. At-

mospheric turbulence effects on laser speckle imaging or imaging correlography are
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briefly reviewed here. As previously stated, a single layer of atmospheric turbulence

encountered at the observation plane has little effect on non-imaged laser speckle,

only layered atmosphere need be considered. Also, a thin layer of atmosphere at the

object plane has little effect on nonimaged, speckle intensity measurements. This is

explored mathematically along with an extended, thick atmosphere.

1.2.2.1 An Atmospheric Layer at the Observation Plane. If the sce-

nario of a mountaintop observation system looking skyward at zenith is considered,

a single, thin layer of atmosphere at the pupil plane is a reasonable and often used

model [1]. For mathematical and experimental convenience, extensive research has

been detailed on how to analytically replace a turbulent region with an equivalent

thin, random screen [35]. For a satellite at geostationary orbit, the ratio of the tur-

bulent layer thickness to the overall propagation distance is very small. For this case,

the turbulent layer is considered a “thin” phase screen. In this model, only the phase

of the optical wave is distorted by the turbulent region and not the amplitude [1].

Amplitude effects are predominantly observed from propagation distance. For this

scenario, phase aberration effects are modeled as a single additive phase parameter,

ψ(u). The phase aberrated field, G(u) at the observation plane is described as

G(u) = F (u)ejψ(u), (1.10)

where F (u) is the reflected field after Fraunhofer propagation. The intensity (without

noise) is

I(u) =|G(u)|2

=|F (u)ejψ(u)|2

=|F (u)|2 · ejψ(u) · e−jψ(u)

=|F (u)|2. (1.11)
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In simple terms, Eqn. 1.11 describes why the phase aberration due to atmospheric

turbulence at the observation plane has no effect on the observed intensity. Speckle

noise, detector array effects, system noise, and scintillation due to layered atmosphere

are not overcome in a single laser speckle observation.

1.2.2.2 An Atmospheric Layer at the Object Plane. Consider the

scenario of a satellite-based sensing system observing the Earth’s surface. In this

case, a single thin layer of atmosphere at the object plane is a simplified, yet realistic

model. This is the same model as the previous section; however, the sensing system

and the remote target are reversed. Again, the relatively lengthy propagation distance

above the atmosphere as compared to the short propagation distance through the

atmosphere is encountered. Much of the atmospheric turbulence effects is due to the

dense atmosphere close to the Earth’s surface. In considering the Earth’s atmosphere

as a thin phase screen at the object plane, the phase aberrated field is denoted by

g(x).

g(x) = f(x)ejψ(x)

= a(x)ejφ(x)ejψ(x)

= a(x)ej(φ+ψ)(x)

= a(x)ejφ
′

(x) (1.12)

From Eqn. 1.12 the additive phase abberation only adds another random number to

the random phase of the object field, f(x), due to the rough object surface. The

object phase is a random variable uniformly distributed between [−π, π]. Adding a

zero mean, random number to a uniformly distributed random number, {φ ∈ [−π, π]},
yields another uniformly distributed number φ ∈ [−π, π]} due to phase wrapping.

Therefore, the result is identical to the case without atmosphere.
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1.2.2.3 An Extended Atmosphere. Rayleigh-Sommerfeld Propagation

theory [18] is used to address the more complicated extended atmosphere scenario.

The geometry for this propagation is depicted in Fig. 1.5. The Rayleigh-Sommerfeld

diffraction equation is:

F (u) =
1

jλ

∫

Σ

f(x)

χ(x,u)
exp

(−j2πχ(x,u)

λ

)
Υdx. (1.13)

Here, χ(x,u) is the propagation distance between any two points on the object and

observation planes, Σ is the finite object plane, spatial area (or aperture in diffraction

theory terms) and Υ is the obliquity factor. Υ goes to unity as the geometry angles

are small or the observing plane is far from the diffracting aperture. The primary

emphasis for exploring Rayleigh-Sommerfeld, Eqn. 1.13 does not have the simplifying

assumptions of the Fraunhofer propagation.

Figure 1.5: Geometry for Propagating Through Turbulence

Treating each point on the object plane as an individual point source emitting an

optical wave, the wavefront undergoes a propagation path length, χ(x,u) dependent

upon spatial position in both the object and observation planes. χ(x,u) is calculated

according to:

χ(x, y, u, v) =
√
z2 + (x− u)2 + (y − v)2. (1.14)

13



Note when z is large (the Fraunhofer region) and two simplifying approximation are

made, the Rayleigh-Sommerfeld diffraction equation simplifies to the Fraunhofer prop-

agation model [18]. These are (1) χ ≈ z for the term not found in the exponent and

(2) for the χ found in the exponent, the binomial expansion to Eqn. 1.14 is approxi-

mated with only the first two terms. Returning to Rayleigh-Sommerfeld propagation,

the atmospheric effects on the propagation path, χ(x,u), must be included.

The extended atmospheric turbulence produces rapid and random changes in

the refractive index [1]. Using the first order, Rytov approximation (and weak fluc-

tuation conditions), the turbulence produces a complex phase perturbation on the

optical wave [1]. This effectively delays propagation or produces phase aberrations

for the propagating wavefront. The phase aberration, ψ(x,u, z), essentially changes

the path length by the relationship

ψ(x,u, z) =
νχ∆(x,u)

c(x,u, z)
(1.15)

where ν is the frequency of the light, c is the speed of light for a given refractive

index, and χ∆ is the change in path length. Adding the path length change due to

the phase aberration to Eqn. 1.13 yields Eqn. 1.16.

F (u) =
1

jλ

∫

Σ

f(x)

(χ(x,u) + χ∆(x,u))
exp

(−j2π(χ(x,u) + χ∆(x,u))

λ

)
dx (1.16)

The path length change, due to the phase aberration caused by turbulence, is a func-

tion of both object plane and observation plane coordinates. The random perturba-

tions cause path dependent changes to the optical wavefront. From this it is reasoned,

Eqn. 1.16 can not be simplified to a scaled Fourier Transform. The layered atmosphere

causing scintillation is a much more difficult problem. Propagation through extended

turbulence corrupts the Fourier magnitude of the object field. Extended atmosphere

and scintillation effects on laser correlography were explored analytically and exper-
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imentally by Elbaum et al. [10]. The authors concluded under certain conditions

the random apodization effect will be negligibly small for a ground-based receiver

observing a near-zenith exoatmospheric target. This research will only consider the

simple, atmospheric model of a thin phase screen either at the object or observation

planes. Although previous researchers in this area acknowledge effects due to high

altitude turbulence and scintillation, a thin atmosphere or screen is often assumed

for simplification or implied with the data model [11, 23, 25, 39, 44]. The thin screen

assumption is continued throughout this dissertation.

1.3 Research Contributions

This dissertation provides three primary research contributions:

• Statistical Analysis of Correlography Data. The observed laser speckle is trans-

formed via a post-processing technique that produces noisy autocorrelations.

The randomness of the transformed data can be closely modeled by the nega-

tive exponential distribution.

• Two Iterative Algorithms Using Polarimetric Data. Iterative solutions for max-

imum likelihood and maximum a posteriori estimators are developed using the

Expectation Maximization technique.

• A Theoretical Bound on Resolution for Correlography. A Cramer-Rao Lower

Bound for resolving two closely spaced point sources is presented using the

negative exponential noise model and polarimetric data models.

1.4 Dissertation Overview

This document is divided into seven chapters and contains three appendices.

Chapter 2 presents relevant technical background information as the theoretical basis

for this research. Previous research in phase retrieval and non-imaging laser speckle

is highlighted.
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Chapter 3 provides the relevant mathematical models and theory that form a

foundation for this research. Although most of this material may be found elsewhere,

it provides foundational elements behind the later chapters to include proposed sensor

models and statistical framework.

Chapter 4 provides new theoretical work associated with computational algo-

rithms for solving the phase retrieval problem using polarization diversity. Two po-

larimetric algorithms are presented differentiated by data collection schemes.

Chapter 5 details a theoretical resolution bound for correlography using polar-

ization diversity. The bound itself is not predictive of specific algorithm performance;

however, it demonstrates theoretical improvement provided by adding polarization

diversity. A Cramer-Rao Lower Bound is presented for both unpolarized and po-

larized data scenarios. The comparison of theoretical bounds demonstrates relative

improvement provided by polarization diversity.

Chapter 6 presents results and analysis from computer simulation and labora-

tory experiments. A representative subset of simulation and experimental results are

presented to support key research findings and contributions. This chapter provides

comparative results between polarimetric and non-polarimetric algorithms.

Chapter 7 concludes the main document by providing an overall summary of

research activities, a summary of key findings, and recommendations for subsequent

research. This is followed by the appendices that provide some of the detailed math-

ematical proofs.
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II. Background

This chapter describes the theoretical background and previous research work for ob-

ject recovery from laser speckle images. The ultimate goal of object recovery is the

synthesis of the best possible object image from a limited data set. With intensity

measurements, the phase of the original object field is unknown. In fact, the phase

information is lost during the detection process, presenting an ill-posed problem. In

the LADAR application considered in this research, an estimate of the object auto-

correlation is recorded. The Autocorrelation Theorem relates the autocorrelation to

the object’s Fourier Magnitude via the Fourier Transform [18]. Unfortunately, com-

plete information about the original object is not observed. However, with iterative

computing techniques, it has been shown that an image solution relatively similar the

original may be produced. This technique is often described as phase retrieval and is

employed in several applications found in image and signal processing. The goal of

this research is to provide improvement for this specific phase retrieval problem with

laser speckle images.

2.1 Averaging Laser Speckle Patterns

Often with signals corrupted by random noise, the first course of action is to

average a large number of independent signal realizations in hopes of minimizing the

noise effects. In fact, with laser speckled images (formed with a lens), averaging a

large number of registered, independent, speckled images does reduce speckle effects.

There are several techniques for speckle suppression in optical imaging [19]. However,

averaging nonimaged laser speckle patterns does not yield the same result. The en-

semble average of independent, nonimaged laser speckle intensity patterns converges

to a constant, C,

lim
K→∞

K−1

K∑

k=1

Iok
(u) = C, (a constant), (2.1)
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where K is the number of observed frames and Iok
is the kth frame of observed,

speckled intensity data. This is proven in Appendix A. Because of this result, we

must look to another post processing method to recover the object.

2.2 Object Autocorrelation from Intensity Data

Due to speckle, photon noise, and detector array effects, a single laser speckle

image is not useful for object recovery. The random speckle pattern contains statis-

tical information about the object surface, though insufficient for human perception.

However, Idell et al. pointed out the ensemble average of the magnitude squared of

the Fourier transform of the intensity data converges to a result directly related to

the object autocorrelation [25]. We will call this operation the Idell function and

describe the results in Eqn. 2.2.

lim
K→∞

K−1

K∑

k=1

[ |F−1{Iok
(u)}|2 ] = b |h (x)|2 + c [Ro (x)] ∗ |h(x)|2 (2.2)

where b and c are constants, K is the number of independent speckle realizations,

Ro(x) is the autocorrelation of the object intensity, |h(x)|2 is the incoherent, intensity

impulse response of the detector array and ∗ represents convolution operation. The

object autocorrelation is blurred by the impulse response of the detector array in a

similar fashion as an optical system blurs an image via diffraction effects. Because of

this, the resulting autocorrelation is considered diffraction-limited [13]. The impulse

response of the detector array should be known providing the ability to produce a

very good estimate of the object autocorrelation. The result in Eqn. 2.2 ignores

photon noise added during the detection process. The proof of this result is found in

Appendix B.

Through the Wiener-Khinchin Theorem, the object autocorrelation is related

to the power spectral density via a Fourier Transform relationship. Here, the phase

retrieval problem is presented as only the Fourier magnitude is estimated. In the
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next section of this chapter, methods for recovering the Fourier phase of the unknown

object are discussed.

2.3 Phase Retrieval

The problem of phase retrieval comes about when measured data presents only

the magnitude of the signal’s Fourier Transform. In the LADAR application presented

in this paper, the intensity or magnitude squared is collected. Without constraints or

knowledge of the signal, the loss of the phase is irreversible [21]. However, from the

body of research available on phase retrieval problems, with certain constraints and

a priori knowledge of the signal, a recovery is possible.

The idea of synthesizing images from non-imaged laser-speckle is not new. In

1987, Idell et al. proposed a method for recovering unspeckled images and demon-

strated this technique possible with computer simulation [25]. It is this seminal paper

where the starting point of our research is found. An estimate of the object auto-

correlation is formed from many laser speckle images. From this, a phase retrieval

algorithm is employed to produce an estimate of the object. Several phase retrieval al-

gorithms have been proposed in published literature that support our LADAR remote

sensing application. A review of these algorithms is presented next.

2.4 Phase Retrieval Algorithms

Dainty and Fienup detail a thorough review of several phase retrieval methods

to include Newton-Raphson, gradient search, and iterative methods [7,12]. The phase

retrieval problem presents itself in many applications to include optical images formed

with incoherent illumination. For the application considered here, a short review of

applicable phase retrieval algorithms is presented.

2.4.1 Gerchberg-Saxton Algorithm. Gerchberg and Saxton suggested iter-

ating between two sets of data that are related by the Fourier Transform [15]. They

suggest simultaneously recording intensity measurements in both the image and pupil
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planes. The algorithm starts with an initial phase guess generated by a uniform ran-

dom number generator (−π to π). The guessed phase is multiplied to the measured

amplitude in the image plane and the Fourier Transform is taken mapping the data

to the pupil plane. The computed phase from this operation is multiplied to the

amplitude of the pupil plane data. Again, a Fourier transform is performed mapping

the manipulated data set back to the image plane. The computed phase in this op-

eration is applied to the amplitude of the image plane data. This iterative operation

continues until operator intervention or the desired level of error is reached. Gerch-

berg and Saxton demonstrated the estimate error decreases or remains constant for

each iteration. This is an attractive property of the algorithm; it avoids a diverging

solution.

2.4.2 Fienup’s Algorithms. Fienup details two phase retrieval algorithms

descending from the work of Gerchberg and Saxton. The first, Fienup’s Error Reduc-

tion method is essentially a generalized form of the Gerchberg-Saxton phase retrieval

algorithm [11, 12] and is often quoted in literature. The algorithm essentially iter-

ates between object and Fourier domains where known constraints are applied to the

data before continuing with the next iteration. For the object domain, the object

is assumed to be positive and within a known observation region, called object sup-

port. In the beam-limited, LADAR application, the support region is provided by

the extent of the illuminating laser beam. For the Fourier domain, the modulus of

the Fourier Transform of the object field is known from the observed data. For the

LADAR application considered here, this results from the square root of the Fourier

Transform of the noisy (estimated) autocorrelation data. Figure 2.1 depicts a block

diagram of Fienup’s Error Reduction algorithm [11].

An initial guess of the object is required for the algorithm. Without any knowl-

edge of the object, the guess can be from an infinite number of choices. However, the

extent of the object or support region may be known or assumed. Often, the initial

guess is chosen to be the support region itself perturbed with random noise. In a
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Figure 2.1: Block Diagram of Fienup’s Error Reduction Method [11]

later paper [12], Fienup proposes stopping criteria to be the squared error between

the Fourier constraint and the computed Fourier Transform (similar in the object do-

main for successive iterations). This algorithm is a single frame algorithm; it operates

on a single autocorrelation estimate. Without stopping criteria, the algorithm runs

until operator intervention or the number of chosen iterations has been exceeded.

Fienup also presents the input-output algorithm to speed convergence [11, 12].

Fienup adapts the error reduction algorithm to produce a non-linear approach where

the input does not necessarily satisfy the object domain constraints. Also, the input

to the algorithm at each iteration is not considered the current best estimate and

can be modified. Fienup suggests multiple methods for selecting a new estimate of

the object input and recommends periodically changing the selection method after

several iterations. Fienup also suggests a hybrid approach where the error reduction

algorithm is combined with the input-output algorithm. Although Fienup reports this

as a very powerful approach, it appears ad hoc through arbitrary user intervention.

2.4.3 Schulz-Snyder Algorithm. Schulz and Snyder present a unique image

recovery algorithm that operates on nth order correlations [38]. A phase retrieval

algorithm is presented with n = 2. Schulz and Snyder choose to maximize a log-

likelihood function of the data where a Poisson model is selected. Schulz and Snyder
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acknowledge that few applications present autocorrelation data corrupted by Poisson

noise; however, he states this model does enforce positivity and is similar to cases

where the noise is signal dependent. For applications with signal dependent noise but

unknown distribution this algorithm may be a good choice. For the application con-

sidered in this paper, the autocorrelation does not exhibit Poisson noise as discussed

in Chapter III. Equation 2.3 depicts the Schulz-Snyder iterative algorithm:

ok+1(x) =
ok(x)

2
∑

x ok(x)

∑

y

[
ok(x+ y) + ok(x− y)

]
R̃o(y)

Ro(y)
, (2.3)

where ok+1 is the new estimate of the object, ok is the old estimate of the object

from the previous iteration, R̃o(y) is the measured autocorrelation (observed data),

and Ro(y) is the autocorrelation formed from the old object estimate. Using notation

found within this document, the Schulz-Snyder algorithm is re-written to be

onew(x) =
oold(x)

2Sold
o

[
oold ⋆

R̃o

Rold
o

+ oold ∗ R̃o

Rold
o

]
(x), (2.4)

where ⋆ is correlation, ∗ is convolution, onew is the new object estimate, oold is the

object estimate from a previous iteration, R̃o is the measured autocorrelation, Rold
o

is the autocorrelation formed from the old estimate of the object, and Sold
o is the

two-dimensional sum of the old object estimate.

The Schulz-Snyder algorithm also requires a support region where the object is

known to exist and an initial guess. Schulz and Snyder caution against using a smooth,

uniform image as the initial guess and suggest an asymmetric starting image [38].

The initial guess for the Schulz-Snyder algorithm can also be a gross starting point

such as the support region perturbed with independent random variables distributed

uniformly over the interval [0.99,1.01]. The Schulz-Snyder algorithm is also a single

frame algorithm and no stopping criteria is provided. The Schulz-Snyder iterative
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algorithm can be characterized as a gradient search method with object constraints

used to aid in convergence. The initial guess (positive with support) enforces a

solution only within the support region as well as object positivity.

2.4.4 Phillips’ Algorithm. Phillips presents a statistical approach to the

phase retrieval problem claiming Gaussian statistics when the number of independent

laser speckle patterns, K, is large [32]. While the Central Limit Theorem suggests this

is true under the right conditions, Chapter III suggests this is a poor approximation

for our LADAR application. From the Gaussian assumption, the log-likelihood is:

L(o) = − 1

2σ2(y)

∑

y

(
d(y) −

∑

x

o(x)o(x + y)

)2

, (2.5)

where o(x) is the true object, d(y) is the average speckled autocorrelation, and σ2(y)

is the variance. An iterative maximization approach is accomplished with the kth

frame data model detailed in Eqn. 2.6. Averaging the data over K number of frames

is assumed to be Gaussian with a mean equal to the Idell function (Eqn. 2.2). A

sample variance is computed from the K observed frames.

dk(y) =
∣∣∣F−1

{∣∣Fλz {o(x)}
∣∣2 + nk(u)

}∣∣∣
2

(2.6)

Phillips suggests a low-resolution image as the starting point. The author found

the Phillips algorithm to converge with a random guess as the starting image identical

to Fienup and Schulz-Snyder. The Phillips algorithm may be implemented as a

multi-frame algorithm iteratively operating on each noisy autocorrelation realization

obtained after each laser pulse. Lastly, Phillips suggests a statistical based stopping

criteria.
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2.5 Additional Image Recovery Efforts

In addition to the above phase retrieval algorithms, additional methods for

object recovery have been suggested for identical or similar applications.

2.5.1 Phillips Joint Algorithm. Originally proposed by Cain [3], Phillips

and Cain describe a joint algorithm using both image and pupil plane data together

to aid image recovery [33]. The application considered is identical to the application

in this research: a coherent LADAR scenario with both image and pupil plane data

available. The Phillips and Cain technique essentially combines blind deconvolution

of laser imaging and phase retrieval of laser speckle pattern data to produce the

reconstructed image. A Bayesian method is presented that assumes a statistical model

for the image and pupil plane data sets. A combined joint probability density function

is developed and subsequently a joint log likelihood function. The log likelihood

function is then maximized through an iterative technique as a solution for the object

estimate. Two primary assumptions are taken to develop this algorithm. First,

the image and pupil plane data sets, though collected simultaneously, are statistically

independent. Second, the average speckle autocorrelation (from the pupil plane data)

is approximated as Gaussian. While the first assumption is presented without proof,

it is reasonable if the image and pupil plane data are collected at angular or range

offsets. With a slight change in angle, the random phase contributions from the rough

surface produce a different speckle realization at the image and pupil plane collections.

The second assumption is provided from the Central Limit Theorem as a result of

averaging a large number of laser speckle autocorrelations in the processed data. This

assumption is questioned for this research and discussed further in Chapter III.

The Phillips Joint algorithm provides an important method as many remote

sensing applications use an optical imaging system or have an imaging capability

available. However, the image recovery result depends upon the resolution of the

imaging system and the number of laser speckle patterns collected. The better reso-

lution of the imaging system and the more laser speckle patterns collected, the better
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this algorithm performs. Often, optical resolution and data collection time are pre-

mium quantities. This research hopes to decouple the need for the optical imaging

system and reduce the number of laser speckle patterns required through better sta-

tistical models.

2.5.2 Sparse Arrays of Detectors. Fienup and Idell proposed nonimaged

laser speckle pattern collection with large, yet sparse or partially filled detection ar-

rays [14]. This research extends the previous work by the same authors to a large

array developed from a synthetic array of subapertures. This partially filled array

does distort the recovered image via a transfer function. However, Fienup and Idell

demonstrate with sufficient post-processing the transfer function effects can be largely

removed. This result is important for applications where a very large aperture is re-

quired; however, is synthesized with smaller subaperture hosted on multiple vehicles

or geographically dispersed. It is important to note the synthetic array is not devel-

oped by translating a single subaperture in time as in Synthetic Aperture RADAR.

For the application considered in this research, multiple subapertures collect data at

the same time.

2.5.3 Other Novel Ideas. Additional ideas are presented throughout litera-

ture and are too numerous to summarize in this document. Many of the published

phase retrieval algorithms and methods do not apply to the application considered in

this research. However, a few applicable techniques are worthy of mention.

Guizar-Sicairos and Fienup address the effects of a finite sized detector array

on the iterative reconstruction algorithms using Fast Fourier Transforms (FFTs) [20].

In any physical system implemented to measure backscatter energy from coherent

illumination, the reflected field extends beyond the width of the detector array. The

authors suggest this discontinuity in the truncated intensity data causes aliasing or

non-physical effects during computer simulation. Also, a finite object will have an

infinite spectrum causing computational problems with iterative techniques. The

authors propose a weighted projection in the Fourier domain to compensate. Guizar-
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Sicairos and Fienup state this technique improves image quality without sacrificing

resolution and is robust in the presence of noise. For the research considered in this

paper, the proposed physical system will involve a beam-limited scenario. The laser

beam illuminating any real object will normally have significant roll-off in power at

the edges of the beam. Therefore, a “hard object edge” from the object or assumed

support region as described by Guizar-Sicairos and Fienup is not encountered. The

finite support in our research is considered to be the extent of the illuminating beam

without further assumption of the object extent. This research will ensure aliasing

due to computation is eliminated through proper sampling in the observation plane.

In another research effort, Seldin and Fienup showed the use of the Ayers-Dainty

two-dimensional Blind Deconvolution Algorithm applied to phase retrieval [40]. The

Ayers-Dainty algorithm is an important result with broad implications throughout re-

mote sensing and image processing. Blind deconvolution is attempted when one seeks

to solve for two unknown functions from a single noisy measurement (see Eqn. 2.7).

This is often the case in imaging where the point spread function, g(x), of the system

is unknown due to atmospheric distortion. In the blind deconvolution problem for

imaging, one hopes to recover the image, f(x), through iterative computation where

the point spread function must be estimated.

d(x) = f(x) ∗ g(x) + n(x) (2.7)

Seldin and Fienup point out that phase retrieval is a special case of blind deconvolu-

tion when n(x) = 0 and g(x) = f ∗(−x) because of the relationship of the autocorre-

lation, R(x), to the modulus squared of the Fourier Transform.
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R(x) = f(x) ∗ f ∗(−x)

= F−1{ F (u)F ∗(u) }

= F−1{ |F (u)|2 } (2.8)

Note that autocorrelation is a special case of the convolution theorem when f(x) is

convolved with f ∗(−x) [18]. Seldin and Fienup applied the Ayers-Dainty algorithm

and assumed, f and n are independent, zero-mean, Gaussian random processes for the

Wiener filter. The authors acknowledge most images do not satisfy this assumption.

However, they show the filter is effective with the end result equivalent to the Fienup

error reduction algorithm in zero or low noise cases. While this approach is not

a significant improvement over other techniques, it does further demonstrate the

mathematical importance of the phase retrieval problem. Correct statistical models

are significant for improving upon existing phase retrieval algorithms.

This research investigated polarization diversity for improving the phase re-

trieval problem. Multi-channel diversity is not a new concept. Holmes et al. applied

several iterative methods to intensity data formed from two illuminating sources sep-

arated in frequency [23, 24]. For this specific detection scheme, the Expectation-

Maximization algorithm approach is further motivated and detailed mathematically

by Schulz and Voelz [39]. Essentially, two fields, E1 and E2, separated by frequency

illuminate the distant object and the fields are reflected to an array of detectors such

that the individual field component magnitudes and a field cross product is measured.

The measured intensity in the pupil plane at time t is

I(x, t) = |E1(x) exp(jw1t) + E2(x) exp(jw2t)|2, (2.9)
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where w1 and w2 are slightly different frequencies. Holmes et al. state the speckle

field intensities |E1(x)|2 and |E2(x)|2 must be measured separately in order to solve

four equations for the two unknown fields E1 and E2 from noisy data I1, I2, Ir, Ii

related by:

I1(x) =|E1(x)|2 + n1(x), (2.10)

I2(x) =|E2(x)|2 + n2(x), (2.11)

Ir(x) =Re[ E1(x)E∗

2(x) ] + nr(x), (2.12)

Ii(x) =Im[ E1(x)E∗

2(x) ] + ni(x), (2.13)

where n1, n2, nr, ni represent noise and ∗ represents conjugation. Holmes et al. view

this as a phase retrieval problem solving for both reflected fields with a cross-phase

constraint provided by E1(x)E∗

2(x). In companion papers, the authors review several

algorithms for this problem in both the root-matching method and iterative algo-

rithm method [23, 24]. The two separate field intensities, |E1(x)|2 and |E2(x)|2 are

unrelated; they are two distinct measurements of the target. Only with the difficultly

obtained field cross product can this problem be attempted. The simulated results

are attractive; however, the practical implementation with optical hardware appears

to be extremely difficult as the field cross product must be isolated from the com-

bined intensity measurement. The field cross product is easily obtained at RADAR

frequencies but is problematic at optical frequencies requiring complex interferomet-

ric hardware. Obtaining the field cross product, E1(x)E∗

2(x) introduces an additional

processing and estimation problem avoided in this research.

For the Holmes et al. two field mixing approach discussed above, Schulz and

Voelz detail the theory and algorithm for the generalized expectation-maximization

(EM) method. A Poisson probability mass function for the data is assumed similar

to the Schulz-Snyder phase retrieval algorithm from cross-correlations. The Schulz
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and Voelz result is of interest to this research as an EM algorithm is presented in this

dissertation. This is further discussed in Chapters III and IV.
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III. Research Foundations

This chapter provides the sensor and mathematical models used for this research as

well as some preliminary developments for the task of object recovery. In addition to

the basic mathematical model of the observed and processed data, a statistical frame-

work is presented as a basis for the new research. A case is made for the exponential

probability density function describing the random nature of the processed data. This

probability description is used throughout the remaining document, supporting ob-

ject recovery and a theoretical resolution bound. Lastly, maximum likelihood (ML)

and EM algorithms are explored using the exponential distribution.

3.1 Sensor Model

All of the optical detection technology required to perform the LADAR task

described in Chapters I and II exist as commercially available hardware components.

With proper engineering and system integration, a cost effective correlography and

phase retrieval sensor system can be built with commercially available hardware com-

ponents. Laser engineering and power considerations must be included based on the

target size and distance. This section provides the proposed sensor model used to

develop this research. Individual hardware component contributions to noise as well

as calibration issues are not considered. Adding polarization sensitivity to the correl-

ography system requires additional considerations detailed below.

3.1.1 Proposed Sensor Hardware. A large detection array may be “synthe-

sized” using many individual detection elements without a large focusing lens. The

array may be built to be quite large without the limitation of a single mounting

frame but only limited by pointing and integration requirements. The individual de-

tector elements must be pointed in the same direction to eliminate non-linear array

effects. A square, uniform detection array is considered for simplicity. With the use

of commercial off the shelf hardware and the avoidance of a large, monolithic optical
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lens and refractive mirror, system developers can obtain significant cost savings over

traditional optical systems.

A proposed scheme consists of employing polarizing beam splitters (PBSs) to

produce two orthogonally polarized channels of observed data. A single detection

element consists of a PBS followed by a small lenslet to focus the optical waveform

and an optical detection element such as an avalanche photodiode (APD). Although

not a required element, the lenslet is extremely small and cost efficient for focusing

the optical energy onto the detection element. The lenslet does not aid in forming

a traditional image. The APD would be followed by an analog-to-digital (A-D) con-

verter. The digital data would be stored and processed using a computer processor.

Figure 3.1 depicts a single hardware sub-element of the proposed array hardware. In

this manner, a single array can be built for detecting two orthogonal channels.

Figure 3.1: Single Hardware Sub-element for Polarimetric Correlography System

The PBS produces two orthogonally polarized data channels, normally referred

to as S and P polarized channels. The S and P channels are attenuated by the

effect of the polarization and degree of transmission through the PBS. Commercially

available PBSs may be obtained with transmission efficiencies greater than 90 percent.
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Computer simulations presented in Chapter VI assume transmission rates of 100

percent without significant departure from true hardware performance.

The two orthogonally polarized channels allow for unpolarized data collection

as well (e.g. S + P); however, statistical independence between the polarized and

unpolarized data sets is a consideration for system designers. Normally, S + P will

not be statistically independent from either S or P channels; therefore, an alternative

design must be considered.

Figure 3.2: Alternative Sub-element for Polarimetric Correlography System

Use of a traditional beam splitter followed by polarizing film (or polarization

analyzer) for the polarized channel may be employed but at a loss of light levels due

to the nature of the beam splitter. A traditional, non-polarizing beam splitter will

create two channels but only half the original light is transmitted to each channel.

The polarized channel is further attenuated by the effect of the analyzer. Figure 3.2

demonstrates this system design using a traditional beam splitter. It is assumed here

the PBS or non-polarizing beam splitter provides only linear polarization effects and

transmission efficiencies are identical for the two output channels.
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3.1.2 Object Illumination. In order to obtain an estimate of the object

autocorrelation (or equivalently an estimate of the object’s Fourier magnitude), the

correlography technique requires the object to be coherently illuminated. In the

application considered here, the object is either spatially limited (e.g. satellite in

orbit) or the the illuminating beam itself provides a spatial limit. Therefore, the

illuminating beam must be spatially coherent across the entire extent of the beam or

object surface. This is achievable with currently available technology. A reasonable

scenario is considered with the geometry shown in Fig. 3.3: A satellite with d2 = 50

meters extent is orbiting at z = 36, 000 kilometers and the illuminating source has a

finite extent of less than d1 = 1 meter. The light originating at the edges of the source

undergo different time delays, r1/c and r2/c. If the time difference (r2−r1)/c is much

less than the coherence time, τc, of the source, then the spatial coherence (in the object

plane) is observed [17]. With the proposed scenario and the remote object at such

distances, the time difference is on the order of 10−16 seconds. Because the coherence

time, τc, of a conventional laser is inversely proportional to the laser bandwidth [17],

a coherent illumination across the extent of the object is easily achieved with a laser

with bandwidth less than 1GHz. This laser bandwidth is easily achieved with available

technology and does not present cost or design concerns for a proposed system.

Figure 3.3: Geometry for Considering Spatial Coherence

Because polarization sensitivity is to be added, laser illumination characteris-

tics should be considered during system design. We desire statistically independent
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speckle realizations in the two observed channels. Reflectivity as a function of po-

larization may, depending on the object surface, provide statistical independence

between polarimetric data sets. However, further system design should be adopted to

ensure this effect is more readily observed. Simultaneous illumination with two laser

beams with orthogonal polarizations and phase front difference (e.g. tilt) will also pro-

duce different speckle realizations within the two channels. Certainly, with sufficient

phase differences in the two illuminating beams, different realizations of reflected

phase are created at the object surface. Also, at low light levels, photo-detection

noise will dominate the detection process providing statistically independent noise

realizations in the two channels because of separate photo detectors.

3.2 Mathematical Model

The illuminated field at the target plane, f(u), is spatially coherent across the

extent of the target (or beam extent). The reflected field is observed repeatedly over

many laser pulses in the far-field by a synthetic array of optical, “light-bucket” de-

tectors without the aid of an optical lens. K statistically independent, laser speckle

patterns are transformed through post-processing to produce noisy object autocorre-

lations, dk(x).

dk(x) = |F−1{Ik(v)}|2, (3.1)

where Ik(v) is the kth frame of observed laser speckle data and F−1 is the inverse

Fourier transform performed digitally in a computer via a Digital Fourier Transform

(DFT). The, kth frame of nonimaged laser speckle data, Ik(v), is modeled by a

Fraunhofer propagation (Fλz) with a mean wavelength λ and propagation distance

z,

Ik(v) = |Fλz{fk(u)}|2 · A(v) + nk(v), (3.2)
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where A(v) is the aperture function denoting the region the speckle pattern is ob-

served and nk(v) is noise encountered in the detection process that includes pho-

ton noise, read-out noise, and noise due to background light. Speckle noise is in-

herent and occurs prior to detection due to coherent illumination and the random

phase imparted on the reflected wavefront by the rough surface of the target (e.g.

f(u) = |f(u)| exp{jθ(u)}; θ(u) is modeled as uniformly random ∼ U [−π, π] and

independent). Normally, a laser line filter is used to minimize background light.

Recalling Eqn. 2.2, the mean of the noisy object autocorrelations is related to

the true object autocorrelation, Ro(x),

E[ dk(x) ] = b|h(x)|2 + c[Ro(x) ∗ |h(x)|2], (3.3)

where b and c are constants, |h(x)|2 is the known, incoherent point spread function

(PSF) of the detector array, Ro(x) is the true autocorrelation of the object intensity

(o = |f |2), and ∗ denotes convolution. If the detector array is uniform and no zero-

padding is used in the DFT, the PSF is a weighted Dirac delta function, δ(x), and

the mean of the transformed data simplifies to

E[ dk(x) ] = bδ(x) + cRo(x). (3.4)

The strength, b of the delta function in Eqn. 3.4 is related to the detector array and the

intensity of the object scene (see Appendix B). To avoid estimation complexity for a

single pixel of the data image, this pixel value is removed prior to any computation and

replaced with the peak of the estimated object autocorrelation from the initial guess

or old object estimate, oold, from the previous iteration. With these simplifications, a

measured object autocorrelation, R̃o(x) is obtained. The measured autocorrelation,

R̃o(x), is defined by:
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R̃o(x) = K−1

K∑

k=1

dk(x)[1 − δ(x)] +
∑

y

[
oold(y)

]2
δ(x). (3.5)

The measured autocorrelation is the average of the observed data, dk(x), with the

central image pixel modified as discussed above.

3.3 Polarimetric Model

The polarimetric data in this research is obtained via a two-channel system:

one channel is polarization insensitive and the second channel is observed through

polarizing film or via a polarization beam splitter as detailed in Sec. 3.1.1. Originally

proposed by Strong [43], a lumped parameter, p, is introduced that is the polarization

ratio. The polarization ratio is the ratio of the intensity observed in the polarized

channel to the intensity observed in the unpolarized channel,

p =
Ipc
Iupc

, (3.6)

where 0 ≤ p ≤ 1. The polarization ratio is essentially the projection of the object

intensity, o, as viewed through the polarizer, or, the fraction of light transmitted

through the polarizer,

op(y) = p(y)o(y). (3.7)

For this development, the polarization of the object scene (or degree of polarization)

is not estimated nor is an assumption made regarding the decomposition of the re-

flected light into polarized and unpolarized components as found in [28]. The lumped

parameter p is not useful for determining the scene’s degree of polarization; however,

this parameter enables us to relate polarized and unpolarized data elements. The

polarization ratio, p is only used to solve for the unknown object, o.
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Normally, this phase retrieval problem can be characterized by one equation

and two unknowns (Fourier magnitude and phase). By adding a second measure-

ment that is related to the first, the problem is characterized by two equations and

three unknowns (magnitude, phase, and polarization ratio). The second, but related

measurement, further constrains the problem, improving search performance. Us-

ing Eqn. 3.4, suppressing the energy at the central pixel, bδ(x), and applying the

polarimetric model, the Expected Values of the data in the two channels are

E[d
(1)
k (x)] = [1 − δ(x)]

∑

y

o(y)o(y + x), (3.8)

E[d
(2)
k (x)] = [1 − δ(x)]

∑

y

op(y)op(y + x). (3.9)

Equations 3.8 and 3.9 are used in Chapter IV to develop an algorithm to solve for

the unknown object.

3.4 Statistical Model

An accurate statistical model is important for any statistical-based estimator,

the focus of this research. Previous research in correlography similar to the application

considered here has not explored the statistics of the processed data. Much of the

image-recovery via phase-retrieval research area involves gradient search, root-finding

or Fourier transform-based algorithms where a “best-fit” solution is found through

iterative search techniques [12]. Often, assumptions about the remote object are

used to make the computation tractable (e.g. positivity and spatial bound). These

approaches do not employ a statistical model for the data (e.g. [11, 24]). Other

research efforts provide an assumption of the noise statistics for the processed data

(e.g. Gaussian [23, 33]). This research endeavors to better characterize the noise

statistics of the processed data. First, the underlying assumptions of the object are

stated and assumed similar to those found in previous research.
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The statistics of laser speckle due to polarized thermal light are well known

[16,17,19]. The probability distribution function (pdf) of instantaneous intensity for

speckle caused by object phase with a uniform distribution is known to be negative

exponential. The intensity captured by any real detector will be an integrated in-

tensity for a finite integration time, T , and measured in photocounts. The resulting

density function is the negative binomial distribution [17]. This assumes perfectly

polarized light. Partially polarized or unpolarized light will have a different result.

However, with three key assumptions, the statistics of the observed laser speckle

intensity may be analyzed:

1. The amplitude and phase of the reflected field are statistically independent.

This assumption is reasonable since the amplitude is a function of the object

reflectivity and the phase is a function of the surface roughness or height profile.

These two physical elements are unrelated.

2. The phase is spatially independent and identically distributed. This assumption

is essentially that the sample size is not small enough to produce statistical

dependence due to nearness of the sampled points being related by similar

roughness.

3. The object surface roughness is modeled as a uniform random variable dis-

tributed between (−π, π) and statistically independent. This assumption is

valid for most surfaces (other than mirrored surfaces) as the surface is consid-

ered “rough” if the surface height profile is much greater than the wavelength

of the illuminating field.

Even if the distribution of the observed laser speckle intensity deviates from the

negative binomial due to partial polarization of the illuminating beam, a key result is

observed. If these three assumptions are valid, the expected value of the laser speckle

intensity is easily shown to be a constant (see Appendix A).

Knowledge of the average value of the laser speckle intensity patterns will enable

the exploration of the statistics of the processed or transformed laser speckle data.
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Largely due to this expected value result, Appendix C demonstrates the statistics of

the transformed data is well approximated by the exponential distribution. Because of

this result, an ML solution was investigated for solving this particular phase retrieval

problem.

It will be assumed that each frame of collected laser speckle intensity data is

statistically independent. This is accomplished if the phase at the object surface is

statistically independent from pulse to pulse. This is reasonably observed if minute

geometry changes occur from pulse to pulse that produce this effect. These pulse-

to-pulse geometry changes may include target jitter due to movement, target surface

deformation due to compliant structures, laser (source) jitter, etc. Certainly, this

effect is a system design consideration as each frame of laser speckle must be statisti-

cally independent for the result detailed in Appendix B to be observed. Additionally,

it is assumed the simultaneously observed data in the two channels (same pulse or

frame) as collected via a PBS (S and P channels) are statistically independent due

to surface reflectivity as a function of polarization and/or system design with dual

illumination. Simultaneous illumination with two laser beams with orthogonal po-

larizations and phase front difference (e.g. tilt) will also produce different speckle

realizations within the two channels. Also, at low light levels, photo-detection noise

will dominate the detection process providing statistically independent noise realiza-

tions in the two channels because of separate photo detectors.

It will be further assumed the processed data frames are also statistically inde-

pendent. It is assumed the mathematical transformation (magnitude squared of the

Fourier transform) operating on each frame does not create statistical dependence

between data frames.

With exponential statistics, the Signal-to-Noise Ratio (SNR) is easily described.

The exponential distribution is completely described by the first moment or the ex-

pected value. Also, the expected value equals the standard deviation. For this reason,

the SNR of the data set is a function of the number of frames collected, K. Because
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the K noisy, exponentially distributed autocorrelations are summed together, the

final distribution of the average autocorrelation is distributed as a gamma random

variable with expected value equal to K/Ro and standard deviation equal to
√
K/Ro.

Therefore, the SNR for the averaged autocorrelation computed from K frames of data

is equal to
√
K.

3.5 Maximum Likelihood Approach

With laser speckle intensity data transformed to noisy autocorrelations and the

noise modeled with an exponential probability density function, an ML solution is

investigated. Only a single channel of unpolarized data is considered.

The observed data is the autocorrelation of the unknown object corrupted by

exponential noise. Many statistically independent realizations are observed and col-

lected. It is assumed the noise at each sampled point in the data image is statistically

independent from all other points. The joint probability density function (pdf) for a

single frame of data is

pD(d(x)) =
∏

x

1

Ro(x)
e−

d(x)
Ro(x) . (3.10)

The expected value, Ro, is defined by

Ro(x) =
∑

t

o(y)o(y + x), (3.11)

where o(t) is the unknown object intensity and y and x are two dimensional co-

ordinate vectors. We will also assume each frame of observed data is statistically

independent from all other collected data frames. For K frames of data, the joint pdf

is

pD(d1(x), ..., dK(x)) =
∏

k

∏

x

1

Ro(x)
e−

dk(x)

Ro(x) . (3.12)
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Forming the log-likelihood function, L, by taking the natural logarithm of the joint

pdf yields

L = −K
∑

x

lnRo(x) −
∑

k

∑

x

dk(x)

Ro(x)
. (3.13)

Taking the partial derivative of L with respect to the object produces the next equa-

tion.

∂L

∂o(y)
= −K

∑

x

1

Ro(x)

∂Ro(x)

∂o(y)
+
∑

k

∑

x

dk(x)

R2
o(x)

∂Ro(x)

∂o(y)
(3.14)

Next, the partial derivative of Ro(x) with respect to the object, o(y), is computed.

∂Ro(x)

∂o(y)
= o(y + x) + o(y − x) (3.15)

Substituting this result into ∂L/∂o yields

∂L

∂o(y)
= −K

∑

x

R−1
o (x) [o(y + u) + o(y − u)]

+
∑

k

∑

x

R−2
o (x)dk(x) [o(y + u) + o(y − u)] . (3.16)

Setting this equal to zero and solving for o maximizes the function L with respect to

the object, o. Since a closed form solution for o is not feasible, an approach similar

to the Richardson-Lucy (RL) algorithm used in deconvolution [29, 34] is employed.

The ratio of the negative to positive parts of this function is formed and o is solved

iteratively from an initial guess. First, define the average value of the observed data,

D(x), as

D(x) =
1

K

∑

k

dk(x). (3.17)
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The RL approach to iteratively solve for o is then given to be:

onew(y) = oold(y) ·
D(x)
R2

o(x)
⋆ o(x) + D(x)

R2
o(x)

∗ o(x)
1

Ro(x)
⋆ o(x) + 1

Ro(x)
∗ o(x)

, (3.18)

where ⋆ is correlation and ∗ is convolution. This algorithm is problematic in two

respects: (1) The algorithm does not naturally constrain the object magnitude, and

allows for o to grow without bound each iteration, and (2) the algorithm presents

numeric challenges due to division by the squared term Ro which is the current

estimate of the object autocorrelation. This ML approach utilizes a more correct

statistical model than previously published algorithms; however, it does not provide

a useable algorithm as evidenced by analysis with computer simulation. The general-

ized expectation-maximization technique provides a broader and more powerful ML

estimate compared to the ML technique described above.

3.6 Expectation-Maximization Approach

The EM algorithm was systematically defined and convergence proved in the

seminal paper by Dempster, Laird and Rubin (DLR) [9]. The DLR paper coalesced

previous research and journal papers treating this generalized approach to developing

ML estimates. The EM technique has wide applicability with desirable convergence

properties. This approach provides a powerful tool for solving problems involving

missing or incomplete data or direct access to the data necessary to estimate the

required parameters is impossible [30]. Although convergence properties have been

revisited since the original paper [45], the EM algorithm does guarantee convergence

to a local maximum as the likelihood function is increased at every iteration. The

EM algorithm is guaranteed to be stable and converges to an ML estimate [30]. The

EM approach is well-suited for the phase retrieval problem presented in this research.

The EM approach has been used in a related phase retrieval problem [39].

We wish to estimate an object, o(x), from many statistically independent real-

izations of observed data produced by a random process. However, the observed data
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are corrupted by noise. From observed data, noisy autocorrelation data are produced

via a post-processing transformation operation. Each point in the resulting autocor-

relation data is an identically distributed and statistically independent exponential

random variable. This processed data provides an incomplete view of the parame-

ter to be estimated and is called incomplete data. The unobserved data containing

the required information is called the complete data, d̃k(y,x). The complete data is

related to the incomplete data, dk(x) by

dk(x) =

∣∣∣∣∣
∑

y

d̃k(y,x)ejθ(y)

∣∣∣∣∣

2

, (3.19)

where the complete data is multiplied by a uniformly distributed phasor, θ(y), summed

over all values of y, and then a magnitude squared operation is performed. The

subscript k denotes the data frame and x and y are each two-dimensional spatial

variables. This operation: random phasor sum, magnitude squared operation results

in a quantity with an exponential distribution. The incomplete data is known to

be exponentially distributed with mean equal to the autocorrelation of the desired

object. The random phasor sum, magnitude squared seems to be a natural choice of

complete data that leads to exponentially distributed incomplete data.

E[dk(x)] =
∑

y

o(y)o(y + x) (3.20)

Because the the mean of the incomplete data is known, the complete data is chosen

to have the following property:

E[d̃2
k(y,x)] = o(y)o(y + x). (3.21)

The complete data is selected in this manner due to the following:
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E[dk(x)] = E

[∑

y

∑

y1

d̃k(y,x)d̃k(y1 + x) exp{j[θ(y) − θ(y1)]}
]

=
∑

y

∑

y1

E
[
d̃k(y,x)d̃k(y1 + x)

]
E
[
exp{j[θ(y) − θ(y1)]}

]

=
∑

y

∑

y1

E
[
d̃k(y,x)d̃k(y1 + x)

]
δ(y − y1)

=
∑

y

E
[
d̃2
k(y,x)

]

=
∑

y

o(y)o(y + x) (3.22)

Because the phase term, θ(y) is uniformly distributed [−π, π] and independent, the

complete data can be of any distribution or non-random and yield the correct mean

for the incomplete data. The distribution of the complete data can then be chosen in

the most advantageous manner. The square of the original complete data is chosen

to be the new complete data of interest and a Poisson random variable.

˜̃
dk(y,x)

def
= d̃2

k(y,x) (3.23)

P

[
˜̃
d1(y,x), ...,

˜̃
dK(y,x)

]
=
∏

k

∏

x

∏

y

[o(y)o(y + x)]
˜̃
dk(y,x)

˜̃
dk(y,x)!

exp
[
− o(y)o(y + x)

]

(3.24)

The log-likelihood function of the complete data, LCD, is found by taking the natural

log of the probability mass function in Eqn. 3.24.
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LCD(o) =
∑

k

∑

x

∑

y

{
˜̃
dk(y,x) log[o(y)o(y + x)] − [o(y)o(y + x)]

− log[
˜̃
dk(y,x)!]

}
(3.25)

3.6.1 Expectation Step. The expectation step of the EM algorithm, or

Q-Function (Q), is defined as the expectation of the complete data log-likelihood

function conditioned on the old estimate of the object from the previous iteration,

oold(y), and the incomplete data, dk(x),

Q(o|oold, dk(x))
def
= E[LCD(o) | oold, dk(x)]. (3.26)

Q(o|oold) =
∑

k

∑

x

∑

y

E
[˜̃
dk(y,x)|oold, dk(x)

]
· log

[
o(y)o(y + x)

]

−K
∑

x

∑

y

[
o(y)o(y + x)

]
− A.T. (3.27)

where K is the total number of frames and A.T. denotes another term not a function

of the object, o. Next, the conditional expectation of the complete data given the

incomplete data, µ, is computed:

µ(oold, dk(x)) = E
[˜̃
dk(y,x)|oold, dk(x)

]
. (3.28)

This is often the most difficult step in computing the EM algorithm. It may be

difficult to solve for the mean of the conditional density function. This was attempted

for Eqn. 3.28. Using Bayes’ rule, we define the conditional probability mass function
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(pmf) of the complete data given the incomplete data (for a specific frame k, and

specific spatial variables y and x) as

P [
˜̃
dk(y,x) | dk(x)] =

p[dk(x) | ˜̃dk(y,x)]P [
˜̃
dk(y,x)]

p[dk(x)]
(3.29)

The probability mass function of the complete data is specified and the prob-

ability density function of the incomplete data is known. The probability density

function of the incomplete data given the complete data can be assumed to be expo-

nentially distributed; therefore can be specified by only its mean. The mean of this

conditional density is found by

E[dk(x) | ˜̃dk(y0,x)] =
∑

y

∑

y1

E[d̃k(y,x)d̃k(y1 + x) | ˜̃dk(y0,x)]E[exp{j[θ(y) − θ(y1)]}]

=
∑

y

∑

y1

E[d̃k(y,x)d̃k(y1 + x) | ˜̃dk(y0,x)]δ(y − y1)

=
∑

y

E[
˜̃
dk(y,x) | ˜̃dk(y0,x)]

=
∑

y

o(y)o(y + x) − o(y0)o(y0 + x) +
˜̃
dk(y0,x). (3.30)

From this result the probability density function, pD, of the incomplete data condi-

tioned on the complete data is given as

pD
[
dk(x) | ˜̃dk(y,x)

]
=

exp

[
−dk(x)

∑
y o(y)o(y+x)−o(y0)o(y0+x)+

˜̃
dk(y0,x)

]

∑
y o(y)o(y + x) − o(y0)o(y0 + x) +

˜̃
dk(y0,x)

. (3.31)

Returning to Bayes’ rule, this specifies the probability mass function of the incomplete

data given complete data.
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P [
˜̃
dk(y,x) | dk(x)] =




∑
y o(y)o(y + x)

∑
y o(y)o(y + x) − o(y0)o(y0 + x) +

˜̃
dk(y0,x)




· exp


 −dk(x)
∑

y o(y)o(y + x) − o(y0)o(y0 + x) +
˜̃
dk(y0,x)




· exp

[
dk(x)∑

y o(y)o(y + x)

]

· exp[−o(y0)o(y0 + x)]

˜̃
dk(y0,x)!

[
o(y0)o(y0 + x)

]˜̃dk(y0,x)

(3.32)

This pmf is difficult to integrate in order to determine the mean. However,

approximations were attempted in order to find functions easily integrable. With

some reasonable approximations, this pmf may be simplified into a recognizable form

where the mean may be surmised. However, these approximations led to an algorithm

solution that did not properly converge. Adding a second, but related polarimetric

channel, only makes this more difficult. Without a good solution for the conditional

expectation of the complete data, µ(oold, dk(x)), the EM approach using the exponen-

tial noise model was not pursued further.

3.7 Poisson Statistics

The exponential model was unsuccessfully explored as detailed above. There-

fore, a different statistical model was explored. It is known the measured autocor-

relation is not corrupted by Poisson noise; however, successful algorithms have been

developed based on the Poisson model for this specific problem [38, 39]. Algorithms

based on the Poisson model for this type problem are reasoned to minimize the I-

divergence measure for data with signal-dependent noise [38]. Both the Schulz and

Snyder [38] algorithm and the Schulz and Voelz algorithm [39] demonstrate attrac-

tive properties and meaningful results. Also, the Poisson distribution is characterized

only by its mean, similar to the exponential distribution. The Poisson model is again
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chosen for this research. The ML phase retrieval algorithm using Poisson statistics de-

scribed by Schulz and Snyder [38] is re-derived in Appendix D using an EM approach.

The resulting iterative estimator for the unknown object is

onew(y0) =
oold

2Snew
o

·
[
oold ⋆

R̃o

Rold
o

+ oold ∗ R̃o

Rold
o

]
(y0), (3.33)

where ⋆ is correlation, ∗ is convolution, onew is the new object estimate, oold is the old

object estimate from the previous iteration, R̃o is the measured autocorrelation, Rold
o

is the autocorrelation formed from the old estimate of the object from the previous

iteration, and Snew
o is the two-dimensional sum of the new object estimate computed

by Eqn. D.15 in Appendix D.

This iterative algorithm derived via EM technique should be similar or exactly

equal to the Schulz and Snyder ML algorithm [38] (see Eqn. 2.3). By inspection,

the EM derived algorithm only differs from the Schulz and Snyder ML algorithm by

a scale factor (see Appendix D). This result is provided here for comparison to a

multi-channel approach detailed in Chapter IV.
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IV. Polarimetric Algorithms

This chapter describes two EM algorithms for use with polarimetric data. A maximum

likelihood estimator is formed to process polarimetric data related to the unknown

object’s autocorrelation. Two different system models are explored: (1) a two-channel

system and (2) a dual-channel system. The difference in the system models is the

polarization configuration for the two data channels. The EM technique employed

here follows closely with the clear development of the generalized EM algorithm found

in [37,39].

The EM algorithm technique allows for generalized developments such as an

extension to maximum a posteriori (MAP) estimators as shown by Dempster, Laird

and Rubin [9]. In this chapter, the EM method is extended to a MAP approach for

the two-channel system with the introduction of a prior distribution on the polariza-

tion parameter, p. Lastly, a statistical-based stopping criteria is provided for timely

stopping of the iterative algorithms.

4.1 Two-Channel Algorithm

A two-channel system observes unpolarized and polarized data in two channels.

Channel one produces the unpolarized data set and channel two produces the polar-

ized data set. As presented in Chapter III, there are multiple approaches to system

design to produce the polarized and unpolarized data sets. However, this correlog-

raphy method requires statistical independence in the two channels, an important

design consideration. The following development delineates an EM algorithm.

4.1.1 Incomplete Data Model. The incomplete data, dk(x), is a series of

statistically independent, noisy autocorrelations of the original object transformed

from laser speckle observations. With an assumption about the target scene’s surface

roughness, the observed laser speckle data is known to be statistically distributed

as Negative Binomial due to the doubly stochastic process of speckle generation and
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photoelectric detection [17]. However, the transformation of the laser speckle data

into noisy autocorrelations (see Eqn. 3.1) produces entirely different statistics and can

be approximated by an exponential distribution with mean equal to the true object

autocorrelation (see Appendix A). The exponential model was unsuccessfully explored

as detailed in Chapter III. The Poisson model is chosen for the development of a

multi-channel polarimetric algorithm. This development is a polarimetric extension

to the Schulz and Snyder algorithm for recovering images from correlation data [38]

developed with the EM technique. The single channel, non-polarimetric variant is

developed for completeness in Appendix D.

4.1.2 Complete Data Model. The complete data is postulated to be statisti-

cally independent variates, d̃k(y,x), distributed as Poisson, related to the incomplete

data and with expected values:

d
(1)
k (x) =

∑

y

d̃
(1)
k (y,x), (4.1)

E[d̃
(1)
k (y,x)] = o(y)o(y + x), (4.2)

d
(2)
k (x) =

∑

y

d̃
(2)
k (y,x), (4.3)

E[d̃
(2)
k (y,x)] = op(y)op(y + x), (4.4)

where E[·] is the expected value operator, x and y are two-dimensional spatial vari-

ables, o is the unknown object, op is the unknown polarized object as viewed through

the polarization analyzer, and (1) and (2) indicate channel number. Assuming sta-

tistical independence between the two channels and each frame, the complete data

log-likelihood, LCD, is
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LCD(o) =
K∑

k=1

K∑

l=1

∑

x

∑

y

{
d̃

(1)
k (y,x) log[o(y)o(y + x)] + d̃

(2)
l (y,x) log[op(y)op(y + x)]

− o(y)o(y + x) − op(y)op(y + x) + O.T.

}
, (4.5)

where k and l are independently indexed frame numbers and O.T. represents other

terms not a function of o or p. These terms are eliminated in the maximization step;

therefore, they are ignored.

With this formulation of the log-likelihood function, the EM solution for the

unknown object o degenerates into a solution as function of the data observed only

in the unpolarized channel (e.g. onew is not a function of pnew). This degeneration

of the two-channel polarimetric system also occurs in the imaging case as detailed

by Strong [43]. To overcome this degenerative solution and use all of the data from

both channels, Strong proposed a departure from the EM technique by using an

old estimate of the polarization ratio, pold, for calculating onew. Strong successfully

used this substitution with reasonable results but produced an algorithm no longer

characterized as EM. This research explored a similar approach with satisfactory

results for o; however, the estimated values for p become non-physical and are often

estimated to be much larger than one. To overcome this difficulty and maintain

the EM algorithm technique, it is proposed to include a prior distribution on the

polarization ratio, p, similar to the imaging case found in [26]. The introduction of

the prior distribution extends the EM algorithm to a MAP estimator vice an ML

estimator.

The polarization ratio is known to be positive but also less than or equal to

one; however, a uniform density function (e.g. p ∼ U [0, 1]) is not helpful. It can be

reasoned that the polarization ratio of a random scene is less likely, on average, to

produce a p equal to zero or one and more likely, on average, to produce a p near 0.5.

51



Therefore, a normal distribution, with density function f(p), centered at 0.5, is an

ideal prior,

f(p) = s exp

[
−
(
p− 0.5

σ

)n]
, (4.6)

where s is a scaling parameter, σ is an arbitrary shape parameter, and n is a posi-

tive, even integer. However, this nth order distribution adds unwanted computational

complexity to the estimator. Consequently, the selection of a meaningful prior dis-

tribution must be as simple as possible to keep the problem tractable. Additionally,

any algorithm development must enforce positivity for both o and p. Therefore, the

simple exponential distribution with a mean, λ = 1/2, is chosen. This choice of λ is

arbitrary but found to perform reasonably well. The exponential distribution with

density function, f(p), constrains p > 1 as less likely compared to 0 ≤ p ≤ 1,

f(p; p =
1

2
) = 2 exp[−2p(y)]. (4.7)

This distribution, while not entirely informative, does enforce positivity, and

constrains large values of p to be less likely. This simple selection provides these two

properties and enables analytic solutions for o and p estimates using both data chan-

nels. With this selection of a prior constraining p, the complete data log-likelihood

function becomes,

LCD(o, p) =
K∑

k=1

K∑

l=1

∑

x

∑

y

{
d̃

(1)
k (y,x) log[o(y)o(y + x)] + d̃

(2)
l (y,x) log[op(y)op(y + x)]

− o(y)o(y + x) − op(y)op(y + x) − 2p(y) + O.T.

}
. (4.8)
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4.1.3 Expectation Step. For the Expectation Step (E-Step), the conditional

expectation of the complete log-likelihood is taken:

Q(o, p) =E[LCD| dk(x), o = oold, p = pold] = Eold[LCD]

=
K∑

k=1

K∑

l=1

∑

x

∑

y

{
Eold[d̃

(1)
k (y,x)] log[o(y)o(y + x)]

+ Eold[d̃
(2)
l (y,x)] log[op(y)op(y + x)]

− o(y)o(y + x) + op(y)op(y + x) − 2p(y)

}
. (4.9)

The conditional expectation, Eold, is conditioned on the incomplete data and old

estimates of the object, o, and parameter, p. The conditional expectation of the

complete data is often the most difficult step of the EM process. Fortunately, by

choosing the Poisson model, the form of the conditional expectation is provided by

Shepp and Vardi [42],

µ1(y0,x) = Eold[d̃
(1)
k (y0,x)] = oold(y0)o

old(y0 + x)
d

(1)
k (x)

Rold
o (x)

, (4.10)

µ2(y0,x) = Eold[d̃
(2)
l (y0,x)] = oold

p (y0)o
old

p (y0 + x)
d

(2)
l (x)

Rold
po (x)

, (4.11)

where the autocorrelations formed by the old estimate of the objects o and op are
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Rold

o (x) =
∑

y

oold(y)oold(y + x), (4.12)

Rold

po (x) =
∑

y

oold

p (y)oold

p (y + x). (4.13)

4.1.4 Maximization Step. The Maximization Step (M-Step) is performed

by maximizing Q(o, p) of Eqn. 4.9 for the unknown variates, o and p. The Q-function

is maximized by finding the zero of the first partial derivatives.

∂Q

∂o(y0)
=

K∑

k=1

K∑

l=1

∑

x

{
µ1(y0,x)

o(y0)
+
µ1(y0 − x,x)

o(y0,x)
+
µ2(y0,x)

o(y0)
+
µ2(y0 − x,x)

o(y0)

− o(y0 + x) − o(y0 − x) − p(y0)op(y0 + x) − p(y0)op(y0 − x)

}

= 0. (4.14)

Solving for o(y0) yields the new estimate for o,

onew(y0) =
1

2K2[Snew
o + Snew

po p
new(y0)]

K∑

k=1

K∑

l=1

∑

x

{
µ1(y0,x) + µ1(y0 − x,x)

+ µ2(y0,x) + µ2(y0 − x,x)

}
, (4.15)

where

Snew

o =
∑

x

onew(x), (4.16)

Snew

po =
∑

x

onew

p (x). (4.17)
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Equation 4.15 can be simplified by evaluating the summation terms:

onew(y0) =
Ψ1(y0) + Ψ2(y0)

2[Snew
o + Snew

po p
new(y0)]

, (4.18)

where

Ψ1(y0) = oold

[
oold ⋆

R̃o

Rold
o

]
(y0) + oold

[
oold ∗ R̃o

Rold
o

]
(y0), (4.19)

Ψ2(y0) = oold

p

[
oold

p ⋆
R̃po

Rold
po

]
(y0) + oold

p

[
oold

p ∗ R̃po

Rold
po

]
(y0), (4.20)

⋆ denotes correlation, and ∗ denotes convolution. Note, if p = 0 everywhere, the

second channel vanishes and the above solution is equivalent to the single channel

solution [38] solved via ML technique. However, if p > 0 for any point in the scene,

the new terms assert themselves to yield the proposed multi-channel algorithm.

The solution for onew is a function of the polarization ratio, pnew, also to be

estimated. Therefore, the Q-function will be maximized for the parameter, p. This

is accomplished by also finding the zero of the first partial derivative,

∂Q

∂p(y0)
=

K∑

k=1

K∑

l=1

∑

x

{
µ2(y0,x)

p(y0)
+
µ2(y0 − x,x)

p(y0)
− o(y0)op(y0 + x) − o(y0)op(y0 − x) − 2

}

= 0 (4.21)

Solving for p(y0) yields the new estimate for p,

pnew(y0) =
Ψ2(y0)

2[onew(y0)S
new
po +N ]

, (4.22)
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where N is the total number of pixels in the two-dimensional spatial vector, x. Plug-

ging Eqn. 4.22 back into Eq. 4.18 yields a quadratic equation from which the positive

root is selected. This provides the final equation for estimating onew,

onew(y0) =
Snew
po Ψ1 − 2NSnew

o + [(2NSnew
o − Snew

po Ψ1)
2 + 8NSnew

o Snew
po (Ψ1 + Ψ2)]

1/2

4Snew
o Snew

po

.

(4.23)

The estimate for onew is a function of old estimates and the data in both polarized

and unpolarized channels. To form this estimate, both the scaling constants Snew
o and

Snew
po must be computed. First, Q(o, p) is maximized for op in order to find the sum

of the new polarized object estimate, Snew
po ,

∂Q

∂op(y0)
=

K∑

k=1

K∑

l=1

∑

x

{
µ2(y0,x)

op(y0)
+
µ2(y0 − x,x)

op(y0)
− op(y0 + x) − op(y0 − x)

}

= 0. (4.24)

Solving this equation for Snew
po and summing both sides of the equation yields a solution

for the scaling factor as a function of old estimates and the data in the polarized

channel,

Snew

po =

[
1

2

∑

y0

Ψ2(y0)

]1/2

. (4.25)

Finally, the sum of the new object estimate, Snew
o , is solved for by summing both sides

of Eqn. 4.18,

Snew

o =

[
1

2

∑

y0

[Ψ1(y0) + Ψ2(y0)] − (Snew

po )2

]1/2

. (4.26)
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4.2 Dual-Channel Algorithm

In this section, a dual-channel, EM algorithm is considered. A dual-channel

system observes polarized data in two orthogonal channels. Employing a PBS in a

non-imaging LADAR system provides two channels of orthogonally polarized data.

A PBS may provide polarized data with minimal light loss as compared to traditional

polarizers. Also, this correlography method requires statistical independence in the

two data channels to be completely effective; a requirement aided by engineering a

system with a PBS.

4.2.1 Incomplete Data Model. The incomplete data is the observed data

with the object obscured by noise and detection limitations. The incomplete data,

d
(1)
k (x) and d

(2)
l (x), is a set of statistically independent, noisy autocorrelations of

the polarized object transformed from laser speckle observations. The Poisson noise

model is again chosen; identical to the two-channel algorithm with the same ratio-

nale. The expected value of the incomplete data is modeled as autocorrelation of the

polarized object.

E[d
(1)
k (x)] =

∑

y

op1(y)op1(y + x) (4.27)

E[d
(2)
l (x)] =

∑

y

op2(y)op2(y + x) (4.28)

4.2.2 Complete Data Model. The complete data is postulated to be statisti-

cally independent variates, d̃k(y,x), distributed as Poisson, related to the incomplete

data and with expected values:
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d
(1)
k (x) =

∑

y

d̃
(1)
k (y,x), (4.29)

E[d̃
(1)
k (y,x)] = op1(y)op1(y + x), (4.30)

d
(2)
l (x) =

∑

y

d̃
(2)
l (y,x), (4.31)

E[d̃
(2)
l (y,x)] = op2(y)op2(y + x). (4.32)

Assuming statistical independence between the two channels and each frame, the

complete data log-likelihood, LCD, is

LCD(o) =
K∑

k=1

K∑

l=1

∑

x

∑

y

{d̃(1)
k (y,x) log[op1(y)op1(y + x)] + d̃

(2)
l (y,x) log[op2(y)op2(y + x)]

− op1(y)op1(y + x) − op2(y)op2(y + x) + O.T.}, (4.33)

where O.T. represents other terms not a function of o or p. These terms are eliminated

in the M-Step; therefore, are ignored.

In the two-channel case, a prior distribution on p was introduced to avoid a

degenerate solution. However, with the dual-channel case, a prior distribution is

not required. A closed-form solution for o and p is calculated without deviating

from the EM methodology. Considering orthogonality of the two channel data, the

development simplifies the number of unknowns. Because the polarization response in

channel one is orthogonal to the polarization response in channel two, the polarization

ratios of the two channels are related by:
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p2(y) = 1 − p1(y). (4.34)

This permits the dropping of the channel subscript for the polarization ratio in sub-

sequent equations and simplifies the polarized object model:

op1(y) = p(y)o(y), (4.35)

op2(y) = [1 − p(y)]o(y). (4.36)

4.2.3 Expectation Step. For the Expectation Step, the conditional expecta-

tion of the complete log-likelihood is taken:

Q(o, p) = E[LCD| dk(x), o = oold, p = pold] = Eold[LCD]

=
K∑

k=1

K∑

l=1

∑

x

∑

y

{
Eold[d̃

(1)
k (y,x)] log[op1(y)op1(y + x)]

+ Eold[d̃
(2)
l (y,x)] log[op2(y)op2(y + x)]

− op1(y)op1(y + x) + op2(y)op2(y + x)

}
. (4.37)

The conditional expectation, Eold, is conditioned on the incomplete data and old

estimates of the object, o, and parameter, p. By choosing the Poisson model, the

form of the conditional expectation is known,

µ1(y0,x) = Eold[d̃
(1)
k (y0,x)] = oold

p1 (y0)o
old

p1 (y0 + x)
d

(1)
k (x)

Rold
op1(x)

, (4.38)
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µ2(y0,x) = Eold[d̃
(2)
l (y0,x)] = oold

p2 (y0)o
old

p2 (y0 + x)
d

(2)
l (x)

Rold
op2(x)

, (4.39)

where the autocorrelations formed by the old estimate of the polarized objects, op1

and op2, are

Rold

op1(x) =
∑

y

oold

p1 (y)oold

p2 (y + x), (4.40)

Rold

op2(x) =
∑

y

oold

p2 (y)oold

p2 (y + x). (4.41)

4.2.4 Maximization Step. Again, the Maximization Step is performed by

maximizing Q(o, p) of Eqn. 4.37 for the unknown variates, o and p. The Q-function

is maximized by finding the zero of the first partial derivatives.

∂Q

∂o(y0)
=

K∑

k=1

K∑

l=1

∑

x

{
µ1(y0,x)

o(y0)
+
µ1(y0 − x,x)

o(y0)
+
µ2(y0,x)

o(y0)
+
µ2(y0 − x,x)

o(y0)

− 2p(y0)p(y0 + x)o(y0 + x) − 2[1 − p(y0)][1 − p(y0 + x)]o(y0 + x)

}

= 0. (4.42)

Solving for o(y0) yields the new estimate for o,

onew(y0) =
1

2K2
[
pnew(y0)S

new
op1 + [1 − pnew(y0)]S

new
op2

]
K∑

k=1

K∑

l=1

∑

x

{
µ1(y0,x) + µ1(y0 − x,x)

+ µ2(y0,x) + µ2(y0 − x,x)

}
, (4.43)
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where

Snew

op1 =
∑

x

onew

p1 (y), (4.44)

Snew

op2 =
∑

x

onew

p2 (y). (4.45)

Equation 4.43 can be simplified by evaluating the summation terms:

onew(y0) =
Ψ1(y0) + Ψ2(y0)

2
[
pnew(y0)S

new
op1 + [1 − pnew(y0)]S

new
op2

] , (4.46)

where

Ψ1(y0) = oold

p1

[
oold

p1 ⋆
R̃op1

Rold
op1

]
(y0) + oold

p1

[
oold

p1 ∗ R̃op1

Rold
op1

]
(y0), (4.47)

Ψ2(y0) = oold

p2

[
oold

p2 ⋆
R̃op2

Rold
op2

]
(y0) + oold

p2

[
oold

p2 ∗ R̃op2

Rold
op2

]
(y0). (4.48)

R̃op1 and R̃op2 are the measured autocorrelations obtained from the observed data in

channels one and two, respectively, This definition was first described in Chapter III.

R̃op1 = K−1

K∑

k=1

d
(1)
k (x)[1 − δ(x)] +

N∑

y=1

[oold

p1 (y)]2δ(x) (4.49)

R̃op2 = K−1

K∑

l=1

d
(2)
l (x)[1 − δ(x)] +

N∑

y=1

[oold

p2 (y)]2δ(x) (4.50)

pnew(y) is estimated by maximizing the Q-function with respect to the p param-

eter.
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∂Q

∂p(y0)
=

K∑

k=1

K∑

l=1

∑

x

{
µ1(y0,x)

p(y0)
+
µ1(y0 − x,x)

p(y0)
+
µ2(y0,x)

1 − p(y0)
+
µ2(y0 − x,x)

1 − p(y0)

− 2o(y0)op1(y0 + x) + 2o(y0)op2(y0)

}

= 0. (4.51)

Substituting in the solution for onew from Eqn. 4.46 and solving for pnew produces

a quadratic equation with the following roots:

pnew(y0) =
B(y0) + Ψ1 + Ψ2 ±

√
[Ψ1 + Ψ2 +B(y0)]

2 − 4B(y0)Ψ1

2B(y0)
, (4.52)

where

B(y0) = 2[Snew

op1 − Snew

op2 ]o
new(y0). (4.53)

The smallest (or positive) root is chosen when computing the estimate for pnew. The

sum of the estimated polarized objects, Snew
op1 and Snew

op2 (see Eqns. 4.44 and 4.45) are

unknown but easily computed by the same maximization method:

Snew

op1 =

[
1

2

∑

y0

Ψ1(y0)

]1/2

, (4.54)

Snew

op2 =

[
1

2

∑

y0

Ψ2(y0)

]1/2

. (4.55)

Finally, a solution is found for onew using the above expressions for pnew, Snew
op1 ,

and Snew
op2 and plugging them into Eqn 4.46. While this is a complex equation, it is
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easily reduced using symbolic mathematical solver software such as Mathematicar

or MATLABr. The resulting estimate for the object is surprisingly familiar:

onew(y0) =
Ψ1(y0)

2Sop1
+

Ψ2(y0)

2Sop2
. (4.56)

Note the estimator is the average of two separate estimates formed from each

channel. The estimator for each channel is of identical form of the single channel,

unpolarized algorithm (see Appendix D). Essentially, two phase retrieval estimates

are formed and averaged or fused together with equal weighting. Because autocorre-

lations are symmetric (e.g. Rf (x) = Rf (−x)), solutions include estimates related by

translation and 180o rotation. Therefore, fusion of two similar estimates may require

additional registration or alignment steps.

4.3 Algorithm Computation

In order to initialize this iterative algorithm, an initial guess for the unknown

object and polarization ratio is chosen. Normally, the spatial bound of the object

is known a priori or estimated from the spatial extent of the illuminating beam.

Also, the object is positive and the LADAR system produces a measured autocorre-

lation. Therefore, the initial object guess is chosen with the following conditions: (1)

known support region or spatial bound [Ω : oold(x) = 0 ∀ x ∋ Ω], (2) strictly posi-

tive, [oold(x) > 0 ∀ x ∈ Ω], and (3) average value, A, computed from the measured

autocorrelation,

A = N−1

[
N∑

x=1

R̃o(x)

]1/2

. (4.57)

Therefore, the initial object guess [oold(x) : x ∈ Ω] is selected as independent random

variables distributed uniformly over the interval [A− 0.1, A + 0.1]. The initial guess
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for the polarization ratio is chosen to be uniformly equal to 1/2 within the support

region; [pold(x) = 0.5 ∀ x ∈ Ω].

4.4 Stopping Criteria

With all iterative algorithms, knowing when to stop is an operationally com-

pelling capability. Often, algorithms are allowed to run for a specified number of

iterations or as long as operational time permits if for each successive iteration, the

subsequent estimate error is known to be less than the previous estimate error. In

some cases, noise amplification occurs and the estimated solution diverges if the al-

gorithm is permitted to iterate too long. From simulation and experimental results

with exponential noise, both the two-channel, polarimetric phase retrieval algorithm

presented here and Schulz and Snyder’s single channel phase retrieval algorithm [38]

diverge due to noise amplification after too many iterations. Even with the noise am-

plification, the Poisson model offers attractive properties as detailed in Refs. [38, 39]

and produces satisfactory object estimates with the optimal number of iterations.

Throughout the literature, few algorithms are presented with stopping criteria

based on the statistical properties of the data. However, Phillips provides a simple

and compelling approach to this problem [33]. Phillips proposes a dampening routine

based on the statistics of the data by comparing the variance of the predicted object

to the variance of the data for each subsequent iteration such that

K−1

K∑

k=1

[dk(x) −Rold

o (x)]2 < β · s2(x), (4.58)

where β ∈ {R > 1} is a user chosen parameter determining the degree of dampening

and s2 is the sample variance computed from the observed data. If the variance of

the predicted object is within the variance of the observed data, the pixel should be

damped by setting the ratio of the measured object autocorrelation to the estimated

object autocorrelation equal to one,
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R̃o(x)

Rold
o (x)

7→ 1. (4.59)

The algorithm is then allowed to iterate as long as operationally feasible. Phillips

did not propose a method for selecting the optimal β as this parameter is data de-

pendent. When applying the pixel dampening criteria for this problem with exponen-

tial noise, divergence still occurred after the optimal iteration number was exceeded.

Therefore, a global stopping criteria was selected to achieve the iteration number near

the optimal number in terms of mean-square error. If the criteria found in Eqn. 4.58

is reached on average throughout the entire data image, the algorithm is stopped.

Selecting [1.01 < β < 1.3] produced satisfactory results for the simulated data set.

(N ·K)−1

N∑

x=1

K∑

k=1

[dk(x) −Rold

o (x)]2 < β ·
∑

x

σ2(x) (4.60)

Summary

This chapter provided a detailed development for two new phase retrieval al-

gorithms for the correlography problem presented in Chapter II. Employing the EM

method and using the Poisson noise model and a polarimetric data model two iterative

phase retrieval algorithms were developed. Both MAP and ML methods were pre-

sented as well as computational considerations. Finally, a statistically based stopping

criteria was detailed.
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V. Cramer-Rao Lower Bound on Spatial Resolution

This chapter provides a statistical analysis of the theoretical bound on resolution

for reconstructed images computed in the phase retrieval problem presented in this

research. A statistical model is presented along with a simplistic object model. It is

often postulated how well a particular approach performs as compared to another. A

theoretical bound, independent of the computational algorithm used is a measure of

“best” possible performance given the underlying measurements and data statistics.

The Cramer-Rao Lower Bound (CRLB) is often used as a such a measure. The CRLB

provides a lower bound on the error covariance matrix for any unbiased estimator [36].

Of interest with image reconstruction is how well the image reconstructed com-

pares to the original. An analysis of phase-retrieval error is provided by Cederquist

and Wackerman [5], with Gaussian noise statistics assumed. Here the variance of

the estimate of object intensity is bounded, not resolution. In addition to overall

reconstruction error, resolution or differentiation of image detail is often measured or

studied. Resolution measures how well two distinct but adjacent objects or sources

may be individually distinguishable [8, 22].

A theoretical bound on resolution for a lens-based imaging system was presented

by Shahram and Milanfar [41]. Shahram and Milanfar used a two point source model

for demonstrating resolution. Strong provided a similar theoretical bound for imaging

resolution using a two point source model and polarimetric data [43]. In this research,

a similar approach is applied to the non-imaging, correlography case. A theoretical

resolution bound is developed for three cases: (1) a single channel, unpolarized system,

(2) a two-channel, polarimetric system, and (3) a dual-channel polarimetric system.

The second and third cases will be compared to the first case in order describe the

improvement in performance with the addition of polarization diversity in the remote

sensor system.
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5.1 Object Model

The object, o, consists of two point sources separated by an unknown distance,

∆. The viewing of this simple object’s autocorrelation function is blurred by a known

point spread function (PSF) defined by the observing aperture. The two-dimensional

object geometry considered here is manipulated in one dimension to simplify analysis

and computation as well as maintain a well-conditioned problem. The number of nui-

sance parameters are minimized. Adding additional, unknown nuisance parameters

(e.g. spatial location and brightness) only increases the error bound [36]. Thus, a

lower bound is computed when the number of parameters is minimized. Figure 5.1

depicts the geometry of the object model.

Figure 5.1: Two Point Source Object Model Geometry

The object model is mathematically described by,

o(u, v) = o1δ(u) + o2δ(u− ∆), (5.1)

where δ(u) is the Dirac delta function. For this development, it is assumed the point

source intensities are equal, o1 = o2 with different polarization characteristics. This

development is easily extended to a more complex case where the point sources are

unknown and unequal; more unknowns to be estimated and a larger Fisher Informa-

tion matrix. However, this increases the number of nuisance parameters and moves

this towards an ill-conditioned problem; especially when polarization is considered.
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Problem stabilization, or regularization, must be introduced to overcome the under-

determined nature of the problem or the Fisher Information (FI) matrix becomes

non-invertible. For computational algorithms, this is overcome in practice with the

introduction of a priori information such as object constraints (positivity, spatial

bound, etc.) as described in Chapter II. For the theoretical bound computation

in this development, the problem is kept relatively well-conditioned by limiting the

number of nuisance parameters in the FI matrix.

This simple, two-point object model would not physically create laser speckle

at the observation plane as a large number of scatterers are required to create the

speckle phenomenon. However, this object model is identical to the the framework

established in the imaging case [41, 43]. Also, this theoretical development employs

the statistical model described in Chapter III. This simple, two point source, model

is repeated here for the purpose of showing relative improvement provided by adding

polarization diversity. With demonstrated improvement using polarization diversity

in the simple case, it is postulated the improvement is similarly obtained in the case

of a complex object with large number of polarization diverse scatterers.

The autocorrelation of this object, blurred by a known PSF and corrupted with

exponential noise, is used to depict a theoretical resolution bound with and without

polarization. In the correlography case, the PSF is known with no atmospheric cor-

ruption observed (see Chapter 1.2.2). However, the PSF does limit the resolution of

the estimated object as only a spatially limited and discrete sample of the speckle

intensity is collected. The detection array is modeled with a square, uniform aperture

with width, S, or equivalently a rectangular (rect) function,

rect
(v

S

)
=





0, |v| > S
2
,

1
2
, |v| = S

2
,

1, |v| < S
2
,

(5.2)
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where v is the two-dimensional coordinate vector in the detector plane. Without addi-

tional corruption such as atmospheric distortion, the PSF of the detector array, g(x),

is the Fourier transform of the array aperture function, A(v), magnitude squared,

g(x) = |F{A(v)}|2

= S2sinc2

(
St

2

)
, (5.3)

where F represents the two-dimensional Fourier Transform and x and v are two-

dimensional coordinate vectors.

Let dk(x) denote the kth frame of observed data (a single autocorrelation cor-

rupted by exponential noise). The expected value, Ro(x), of the observed data will

be the autocorrelation of the object convolved with the PSF, g:

Ro(x) =

∞∫∫

−∞

o(u)o(v + u)g(x − v)dudv,

=

∞∫∫

−∞

[o1δ(u) + o2δ(u − ∆)] [o1δ(v + u) + o2δ(v + u − ∆)] g(x − v)dudv

= (o2
1 + o2

2)g(x) + o1o2 [ g(x − ∆) + g(x + ∆) ] . (5.4)

It is assumed each noisy autocorrelation frame is statistically independent and

the noise in each frame is statistically independent at every sampled data point.

Therefore, the joint probability density function is formed and detailed as

P [d1(x), ..., dK(x)] =
∏

k

∏

x

1

Ro(x)
exp

[−dk(x)

Ro(x)

]
. (5.5)
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5.2 Resolution Criterion

Resolution criterion must be defined in order to draw any meaningful conclu-

sions or make reasonable comparisons. “Two-point resolution, which is defined as the

system’s ability to resolve two point sources of equal intensity, is a widely used mea-

sure of the overall resolving capabilities of an imaging system [8].” Using statistical

analysis, the two-point resolution model is adopted here.

Let σ2
∆ denote the lower bound on the mean-squared error for any unbiased

estimator of ∆. Equivalently, σ∆ is the lower bound on standard deviation, or root

mean square deviation, for an unbiased estimator. For this research, two closely-

spaced point sources are considered resolved (e.g. distinguishable from a single point)

if the separation, ∆, is greater than one standard deviation, σ∆, of the estimate error:

∆ > σ∆. (5.6)

If the two points are separated by less than one standard deviation, the uncertainty

of the estimate is large. In this case, the uncertainty of the estimated separation, on

average, tends larger than or approximates the actual separation. If the two points are

separated by greater than one standard deviation of estimate error, the uncertainty

of the estimate, on average, tends to be much less than the actual separation. This

criterion appears somewhat arbitrary: two standard deviations could reasonably be

chosen. However, this criterion is selected for comparing correlography systems with

and without polarization. This criterion is identical to the imaging case found in

Strong [43].

5.3 Bound for Single, Unpolarized Channel

First, a CRLB is computed for a single-channel, unpolarized system. For com-

puting the lower bound, consider the case where o1 = o2. The data, dk(x), is observed
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without a polarizing reference or analyzer. The log-likelihood function, L, is detailed

as

L(∆, o1) =
∑

k

∑

x

[
− lnRo(x) − dk(x)

Ro(x)

]
. (5.7)

The FI matrix, J , is calculated by

Jij = −E
[

∂2L

∂Li∂Lj

]
, (5.8)

where E[·] is the Expected Value operator. Evaluating Eqn. 5.8 yields:

Jij = −E
[
∂

∂Li

∂

∂Lj

∑

k

∑

x

[
− lnRo(x) − dk(x)

Ro(x)

]]

= −E
[
∂

∂Li

[
−K

∑

x

1

Ro(x)

∂Ro(x)

∂Lj
+
∑

k

∑

x

dk(x)

R2
o(x)

∂Ro(x)

∂Lj

]]

= −E
[
K
∑

x

[
1

R2
o(x)

∂Ro(x)

∂Li

∂Ro(x)

∂Lj
− 1

Ro(x)

∂2Ro(x)

∂Li∂Lj

]

+
∑

k

∑

x

[−2dk(x)

R3
o(x)

∂Ro(x)

∂Li

∂Ro(x)

∂Lj
+
dk(x)

R2
o(x)

∂2Ro(x)

∂Li∂Lj

] ]

=

[
K
∑

x

[ −1

R2
o(x)

∂Ro(x)

∂Li

∂Ro(x)

∂Lj
+

1

Ro(x)

∂2Ro(x)

∂Li∂Lj

]

+
∑

k

∑

x

[
2Ro(x)

R3
o(x)

∂Ro(x)

∂Li

∂Ro(x)

∂Lj
− Ro(x)

R2
o(x)

∂2Ro(x)

∂Li∂Lj

] ]

= K
∑

x

1

R2
o(x)

∂Ro(x)

∂Li

∂Ro(x)

∂Lj
. (5.9)

Evaluating the partial derivatives of the autocorrelation
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∂Ro(x)

∂∆
=

∂

∂∆

{
2o2

1g(x) + o2
1 (g(x − ∆) + g(x + ∆))

}

= o2
1

[
d

dx
g(x + ∆) − d

dx
g(x − ∆)

]
(5.10)

∂Ro(x)

∂o1

=
∂

∂o1

{
2o2

1g(x) + o2
1 (g(x − ∆) + g(x + ∆))

}

= 4o1g(x) + 2o1 [g(x − ∆) + g(x + ∆)] (5.11)

As stated previously, the bound with point source intensity o1 = o2 is com-

puted. In this case, one must jointly estimate two parameters: ∆ and o1. This

produces a 2 × 2 Fisher Information matrix. Because this is an ill-posed problem,

there are multiple solutions possible and the Fisher Information matrix may be ill-

conditioned. Adding more than four unknowns causes the Fisher Information matrix

to be highly ill-conditioned and approach singularity. The math is easily extended

to more unknowns (e.g. o1 6= o2, two-dimensional separation); however, the addition

of nuisance parameters when including polarization produces a highly ill-conditioned

matrix where its inverse is not meaningful. Throughout this development, to include

comparison to cases with polarization, the Fisher Information matrix is kept as small

as possible to create a reasonably conditioned matrix. Computing the elements of

the Fisher Information matrix yields the following:
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J∆∆ = K
∑

x

1

R2
o(x)

(
∂Ro(x)

∂∆

)2

= K
∑

x

o4
1

R2
o(x)

[
d

dx
g(x + ∆) − d

dx
g(x − ∆)

]2

(5.12)

Jo1o1 = K
∑

x

1

R2
o(x)

(
∂Ro(x)

∂o1

)2

= K
∑

x

1

R2
o(x)

[
4o1g(x) + 2o1

[
g(x − ∆) + g(x + ∆)

]]2

J∆o1 = K
∑

x

1

R2
o(x)

∂Ro(x)

∂o1

∂Ro(x)

∂∆

= K
∑

x

1

R2
o(x)

{
4o3

1g(x) [g′(x + ∆) − g′(x − ∆)]

+ 2o3
1

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}
(5.13)

Jo1∆ = J∆o1 (5.14)

The Fisher Information matrix is constructed as

J =


 J∆∆ J∆o1

Jo1∆ Jo1o1


 . (5.15)

The lower bound on the error Covariance matrix, C, is found by taking the

inverse of the Fisher Information matrix:

C ≥ J−1, (5.16)

and the CRLB for the separation parameter, ∆, is [36]
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σ2
∆ ≥

[
J−1

]

(1,1)

. (5.17)

The two point sources are considered resolved if

∆ ≥
√[

J−1

]

(1,1)

. (5.18)

This simple case is considered the baseline and will be used comparatively with po-

larimetric cases.

5.4 Bound for Two-Channel, Polarimetric Estimator

Next, the resolution bound for a two-channel polarimetric estimator is calcu-

lated. A two-channel system observes both polarized and unpolarized data in two

independent channels. If the data observed in the polarized and unpolarized channels

are statistically independent, the joint probability density function can be expressed

as a product of the marginal density functions. The joint PDF is

P [dk(x), dl(x)] =
∏

k

∏

l

∏

x

1

Ro1(x)Ro2(x)
exp

[−dk(x)

Ro1(x)
+

−dl(x)

Ro2(x)

]
, (5.19)

where Ro1 is the expected value of the data observed in the unpolarized channel and

Ro2 is the expected value of the data observed in the polarized channel. The polarized

channel observes the autocorrelation of the object as viewed through the polarizer.

The polarized object, op, is described by
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op(u) = p(u)o(u)

= o1p1δ(u) + o2p2δ(u − ∆). (5.20)

The expected value of the observed data in the unpolarized channel remains as de-

tailed in Eqn. 5.4. The expected value of the observed data in the polarized channel

is

Ro2(x) =

∞∫∫

−∞

op(u)op(v + u)g(x − v)dudv

=

∞∫∫

−∞

[
o1p1δ(u) + o2p2δ(u − ∆)

]

·
[
o1p1δ(u + v) + o2p2δ(u + v − ∆)

]
g(x − v)dudv

=

∞∫∫

−∞

[
o2
1p

2
1δ(u)δ(u + v) + o1p1o2p2δ(u)δ(u + v − ∆)

+ o1p1o2p2δ(u − ∆)δ(u + v) + o2
2p

2
2δ(u − ∆)δ(u + v − ∆)

]
g(x − v)dudv

=

∞∫

−∞

[
o2
1p

2
1δ(v) + o1p1o2p2δ(v − ∆) + o1p1o2p2δ(v + ∆)

+ o2
2p

2
2δ(v)

]
g(x − v)dv

=
[
o2
1p

2
1 + o2

2p
2
2

]
g(x) + o1p1o2p2

[
g(x − ∆) + g(x + ∆)

]
. (5.21)

If o1 = o2 then the expected values in the unpolarized and polarized channels simplify

to
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Ro1(x) = 2o2
1g(x) + o2

1

[
g(x − ∆) + g(x + ∆)

]
(5.22)

Ro2(x) = o2
1

[
p2

1 + p2
2

]
g(x) + o2

1p1p2

[
g(x − ∆) + g(x + ∆)

]
. (5.23)

The log-likelihood function, L is detailed as

L(∆, o1, p1, p2) =
∑

k

∑

l

∑

x

{
− lnRo1(x) − lnRo2(x) − dk(x)

Ro1(x)
− dl(x)

Ro2(x)

}
. (5.24)

Computing the Fisher Information matrix yields

Jij = −E
[
∂2L(∆, o1, p1, p2)

∂Li∂Lj

]

= K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂Li

∂Ro1(x)

∂Lj
+

1

R2
o2(x)

∂Ro2(x)

∂Li

∂Ro2(x)

∂Lj

}
. (5.25)

Evaluating the partial derivatives of the autocorrelation in the polarized channel

yields

∂Ro2(x)

∂∆
=

∂

∂∆

{
o2
1

[
p2

1 + p2
2

]
g(x) + o2

1p1p2

[
g(x − ∆) + g(x + ∆)

]}

= o2
1p1p2

[
g′(x + ∆) − g′(x − ∆)

]
, (5.26)

∂Ro2(y)

∂o1

= 2o1

[
p2

1 + p2
2

]
g(x) + 2o1p1p2

[
g(x − ∆) + g(x + ∆)

]
, (5.27)

∂Ro2(y)

∂p1

= 2o2
1p1g(x) + o2

1p2

[
g(x − ∆) + g(x + ∆)

]
, (5.28)

∂Ro2(y)

∂p2

= 2o2
1p2g(x) + o2

1p1

[
g(x − ∆) + g(x + ∆)

]
. (5.29)
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For comparison to the single-channel, unpolarized case the bound with point

source intensity o1 = o2 is computed. The two point sources may not have the

same degree of polarization and will produce different intensities as viewed through a

polarizer. The unknown parameters consist of the separation parameter, ∆, the point

source intensity, o1, and the polarization ratio, p. Again, the number of nuisance

parameters is minimized to avoid an ill-conditioned matrix. The elements of the

Fisher Information matrix are calculated next.
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J∆∆ = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂∆

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂∆

)2
}

= K2
∑

x

o4
1

R2
o1(x)

[
g′(x + ∆) − g′(x − ∆)

]2

+K2
∑

x

o4
1p

2
1p

2
2

R2
o2(x)

[
g′(x + ∆) − g′(x − ∆)

]2

(5.30)

Jo1o1 = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂o1

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂o1

)2
}

= K2
∑

x

1

R2
o1(x)

{
4o1g(x) + 2o1

[
g(x − ∆) + g(x + ∆)

]}2

+K2
∑

x

1

R2
o2(x)

{
2o1

[
p2

1 + p2
2

]
g(x) + 2o1p1p2

[
g(x − ∆) + g(x + ∆)

]}2

(5.31)

Jp1p1 = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂p1

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂p1

)2
}

= K2
∑

x

1

R2
o2(x)

{
2o2

1p1g(x) + o2
1p2

[
g(x − ∆) + g(x + ∆)

]}2

(5.32)

Jp2p2 = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂p2

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂p2

)2
}

= K2
∑

x

1

R2
o2(x)

{
2o2

1p2g(x) + o2
1p1

[
g(x − ∆) + g(x + ∆)

]}2

(5.33)

J∆o1 = K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂∆

∂Ro1(x)

∂o1

+
1

R2
o2(x)

∂Ro2(x)

∂∆

∂Ro2(x)

∂o1

}

= K2
∑

x

1

R2
o1(x)

{
4o3

1g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ 2o3
1

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}

+K2
∑

x

1

R2
o2(x)

{
2o3

1p1p2

[
p2

1 + p2
2

]
g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ 2o3
1p

2
1p

2
2

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}
(5.34)
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J∆p1 = K2
∑

x

{
1

R2
o2(x)

∂Ro2(x)

∂∆

∂Ro2(x)

∂p1

}

= K2
∑

x

1

R2
o2(x)

{
2o4

1p
2
1p2g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ o4
1p1p

2
2

[
g(x − ∆) + g′(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}
(5.35)

J∆p2 = K2
∑

x

{
1

R2
o2(x)

∂Ro2(x)

∂∆

∂Ro2(x)

∂p2

}

= K2
∑

x

1

R2
o2(x)

{
2o4

1p1p
2
2g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ o4
1p

2
1p2

[
g(x − ∆) + g′(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}
(5.36)

Jo1∆ = J∆o1 (5.37)

Jo1p1 = K2
∑

x

{
1

R2
o2(x)

∂Ro2(x)

∂o1

∂Ro2(x)

∂p1

}

= K2
∑

x

1

R2
o2(x)

{
4o3

1p1

[
p2

1 + p2
2

]
g2(x) + 4o3

1p
2
1p2g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o3
1p2

[
p2

1 + p2
2

]
g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o3
1p1p

2
2

[
g(x − ∆) + g(x + ∆)

]2}
(5.38)

Jo1p2 = K2
∑

x

{
1

R2
o2(x)

∂Ro2(x)

∂o1

∂Ro2(x)

∂p2

}

= K2
∑

x

1

R2
o2(x)

{
4o3

1p2

[
p2

1 + p2
2

]
g2(x) + 4o3

1p1p
2
2g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o3
1p1

[
p2

1 + p2
2

]
g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o3
1p

2
1p2

[
g(x − ∆) + g(x + ∆)

]2}
(5.39)

Jp1∆ = J∆p1 (5.40)

Jp1o1 = Jo1p1 (5.41)
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Jp1p2 = K2
∑

x

{
1

R2
o2(x)

∂Ro2(x)

∂p1

∂Ro2(x)

∂p2

}

= K2
∑

x

1

R2
o2(x)

{
4o4

1p1p2g
2(x) + 2o4

1p
2
1g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o4
1p

2
2g(x)

[
g(x − ∆) + g(x + ∆)

]

+ o4
1p1p2

[
g(x − ∆) + g(x + ∆)

]2}
(5.42)

Jp2∆ = J∆p2 (5.43)

Jp2o1 = Jo1p2 (5.44)

Jp2p1 = Jp1p2 (5.45)

(5.46)

As stated previously, the error bound or smallest possible variances of the es-

timated parameters are calculated by taking the inverse of the Fisher Information

matrix. The bound for each unknown parameter is found along the diagonal of the

inverted matrix. The lower bound (variance) on the separation parameter ∆, is de-

tailed by

σ2
∆ ≥

[
J−1

]

(1,1)

. (5.47)

5.5 Bound for Dual-Channel, Polarimetric Estimator

Next, the resolution bound for a dual-channel polarimetric estimator is calcu-

lated. A dual-channel system observes polarized and data in two independent chan-

nels. The polarizer in channel one is orthogonal to the polarizer in channel two. If the

data observed in the two channels are statistically independent, the joint probability
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density function is identical to Eqn. 5.19 with the expected values of the two channels

formulated differently. The joint PDF is

P [dk(x), dl(x)] =
∏

k

∏

l

∏

x

1

Ro1(x)Ro2(x)
exp

[−dk(x)

Ro1(x)
+

−dl(x)

Ro2(x)

]
, (5.48)

where Ro1 is the expected value of the polarized data observed in the channel one

and Ro2 is the expected value of the polarized data observed in the second channel.

With the dual-channel system, the two channels of observed data are related by the

following equation:

p2 = 1 − p1, (5.49)

where p1 represents the polarization ratio of channel one and p2 represents the po-

larization ratio of channel two. In each channel, a noisy object autocorrelation is

observed as viewed through the polarizer. The polarized object as viewed in channels

one and two respectively are described by

op1(u) = p1(u)o(u), (5.50)

op2(u) = p2(u)o(u). (5.51)

Substituting Eqn. 5.1 and Eqn. 5.49, into the above equations for the polarized object

yields
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op1(u) = o1p11δ(u) + o2p12δ(u − ∆), (5.52)

op2(u) = o1p21δ(u) + o2p22δ(u − ∆),

= o1[1 − p11]δ(u) + o2[1 − p12]δ(u − ∆), (5.53)

where the subscripts on the polarization ratio (11) and (12) represent channel one and

object point source one and two respectively. In order to harmonize with previous

developments, it is assumed the point source intensities are identical, o1 = o2; how-

ever, each point source may have a different polarization response, p11 6= p12. With

the polarized object described, the expected value of the observed data in the two

channels are related to the polarized object autocorrelation:

Ro1(x) = o2
1

[
p2

11 + p2
12

]
g(x) + o2

1p11p12

[
g(x − ∆) + g(x + ∆)

]
, (5.54)

Ro2(x) = o2
1

[
(1 − p11)

2 + (1 − p12)
2
]
g(x)

+ o2
1(1 − p11)(1 − p12)

[
g(x − ∆) + g(x + ∆)

]
. (5.55)

The log-likelihood function and the Fisher Information matrix is constructed

identical to Eqns. 5.24 and 5.25. Evaluating the partial derivatives of the polarized

autocorrelations is similar to the polarized channel found in two-channel case. The

elements of the Fisher Information matrix are calculated next.
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J∆∆ = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂∆

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂∆

)2
}

= K2
∑

x

o4
1p

2
11p

2
12

R2
o1(x)

[
g′(x + ∆) − g′(x − ∆)

]2

+K2
∑

x

o4
1(1 − p11)

2(1 − p12)
2

R2
o2(x)

[
g′(x + ∆) − g′(x − ∆)

]2

(5.56)

Jo1o1 = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂o1

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂o1

)2
}

= K2
∑

x

1

R2
o1(x)

{
2o1

[
p2

11 + p2
12

]
g(x) + 2o1p11p12

[
g(x − ∆) + g(x + ∆)

]}2

+K2
∑

x

1

R2
o2(x)

{
2o1

[
(1 − p11)

2 + (1 − p12)
2
]
g(x)

+ 2o1(1 − p11)(1 − p12)

[
g(x − ∆) + g(x + ∆)

]}2

(5.57)

Jp11p11 = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂p11

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂p11

)2
}

= K2
∑

x

1

R2
o1(x)

{
2o2

1p11g(x) + o2
1p12

[
g(x − ∆) + g(x + ∆)

]}2

+K2
∑

x

1

R2
o2(x)

{
2o2

1(p11 − 1)g(x) + o2
1(p12 − 1)

[
g(x − ∆) + g(x + ∆)

]}2

(5.58)

Jp12p12 = K2
∑

x

{
1

R2
o1(x)

(
∂Ro1(x)

∂p12

)2

+
1

R2
o2(x)

(
∂Ro2(x)

∂p12

)2
}

= K2
∑

x

1

R2
o1(x)

{
2o2

1p12g(x) + o2
1p11

[
g(x − ∆) + g(x + ∆)

]}2

+K2
∑

x

1

R2
o2(x)

{
2o2

1(p12 − 1)g(x) + o2
1(p11 − 1)

[
g(x − ∆) + g(x + ∆)

]}2

(5.59)

83



J∆o1 = K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂∆

∂Ro1(x)

∂o1

+
1

R2
o2(x)

∂Ro2(x)

∂∆

∂Ro2(x)

∂o1

}

= K2
∑

x

1

R2
o1(x)

{
2o3

1p11p12[p
2
11 + p2

12]g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ 2o3
1p

2
11p

2
12

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}

+K2
∑

x

1

R2
o2(x)

{
2o3

1(1 − p11)(1 − p12)
[
(1 − p11)

2 + (1 − p12)
2
]
g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ 2o3
1(1 − p11)

2(1 − p12)
2

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}

(5.60)

J∆p11 = K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂∆

∂Ro1(x)

∂p11

+
1

R2
o2(x)

∂Ro2(x)

∂∆

∂Ro2(x)

∂p11

}

= K2
∑

x

1

R2
o1(x)

{
2o4

1p
2
11p12g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ o4
1p11p

2
12

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}

+K2
∑

x

1

R2
o2(x)

{
2o4

1(1 − p11)(p11 − 1)(1 − p12)g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ o4
1(1 − p11)(1 − p12)(p12 − 1)

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}

(5.61)

J∆p12 = K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂∆

∂Ro1(x)

∂p12

+
1

R2
o2(x)

∂Ro2(x)

∂∆

∂Ro2(x)

∂p12

}

= K2
∑

x

1

R2
o1(x)

{
2o4

1p11p
2
12g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ o4
1p

2
11p12

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}

+K2
∑

x

1

R2
o2(x)

{
2o4

1(1 − p11)(1 − p12)(p12 − 1)g(x)

[
g′(x + ∆) − g′(x − ∆)

]

+ o4
1(1 − p11)(p11 − 1)(1 − p12)

[
g(x − ∆) + g(x + ∆)

][
g′(x + ∆) − g′(x − ∆)

]}

(5.62)
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Jo1∆ = J∆o1 (5.63)

Jo1p11 = K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂o1

∂Ro1(x)

∂p11

+
1

R2
o2(x)

∂Ro2(x)

∂o1

∂Ro2(x)

∂p11

}

= K2
∑

x

1

R2
o1(x)

{
4o3

1p11[p
2
11 + p2

12]g
2(x) + 2o3

1p12[p
2
11 + p2

12]g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 4o3
1p

2
11p12g(x)

[
g(x − ∆) + g(x + ∆)

]
+ 2o3

1p11p
2
12

[
g(x − ∆) + g(x + ∆)

]2}

+K2
∑

x

1

R2
o2(x)

{
4o3

1(p11 − 1)[(1 − p11)
2 + (1 − p12)

2]g2(x)

+ 2o3
1(p12 − 1)[(1 − p11)

2 + (1 − p12)
2]g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 4o3
1(p11 − 1)(1 − p11)(1 − p12)g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o3
1(1 − p11)(p12 − 1)(1 − p12)

[
g(x − ∆) + g(x + ∆)

]2

(5.64)

Jo1p12 = K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂o1

∂Ro1(x)

∂p12

+
1

R2
o2(x)

∂Ro2(x)

∂o1

∂Ro2(x)

∂p12

}

= K2
∑

x

1

R2
o1(x)

{
4o3

1p12[p
2
11 + p2

12]g
2(x) + 2o3

1p11[p
2
11 + p2

12]g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 4o3
1p11p

2
12g(x)

[
g(x − ∆) + g(x + ∆)

]
+ 2o3

1p
2
11p12

[
g(x − ∆) + g(x + ∆)

]2}

+K2
∑

x

1

R2
o2(x)

{
4o3

1(p12 − 1)[(1 − p11)
2 + (1 − p12)

2]g2(x)

+ 2o3
1(p11 − 1)[(1 − p11)

2 + (1 − p12)
2]g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 4o3
1(p12 − 1)(1 − p11)(1 − p12)g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o3
1(1 − p11)(p11 − 1)(1 − p12)

[
g(x − ∆) + g(x + ∆)

]2}
(5.65)

85



Jp11∆ = J∆p11 (5.66)

Jp11o1 = Jo1p11 (5.67)

Jp11p12 = K2
∑

x

{
1

R2
o1(x)

∂Ro1(x)

∂p11

∂Ro1(x)

∂p12

+
1

R2
o2(x)

∂Ro2(x)

∂p11

∂Ro2(x)

∂p12

}

= K2
∑

x

1

R2
o1(x)

{
4o4

1p11p12g
2(x) + 2o4

1p
2
11g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o4
1p

2
12g(x)

[
g(x − ∆) + g(x + ∆)

]
+ o4

1p11p12

[
g(x − ∆) + g(x + ∆)

]2}

+K2
∑

x

1

R2
o2(x)

{
4o4

1(p11 − 1)(p12 − 1)g2(x)

+ 2o4
1(p11 − 1)2g(x)

[
g(x − ∆) + g(x + ∆)

]

+ 2o4
1(p12 − 1)2g(x)

[
g(x − ∆) + g(x + ∆)

]

+ o4
1(p11 − 1)(p12 − 1)

[
g(x − ∆) + g(x + ∆)

]2}
(5.68)

Jp12∆ = J∆p12 (5.69)

Jp12o1 = Jo1p12 (5.70)

Jp12p11 = Jp11p12 (5.71)

(5.72)

The lower bound on the separation parameter is computed identical to the previous

cases, inverting the above Fisher Information matrix.

5.6 Bound Results and Comparison

For this problem, there are challenges associated with computing the Fisher

Information matrix and its inverse. First, from the exponential distribution, division

by the mean squared term produces numeric challenges. The sinc-squared PSF in-

troduces extreme nulls as it tapers to zero causing division by very small numbers.
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As the separation parameter is varied, the nulls of the mean squared term vary. The

numerator also tapers to zero in a similar manner; however, without modification,

the resulting division produces erratic oscillations in the computed variance as ∆ is

varied. This challenge was eliminated by a computational mask. FI matrix values

where division by very a small number occurs (below a threshold) are set to zero.

This computational mask eliminated the oscillations in the data allowing for the vari-

ance to decrease without discontinuity as ∆ increases. The computational mask was

identical for all scenarios allowing comparisons.

Second, there are a myriad of possible parameter conditions producing varying

results. The computational scenarios are minimized by keeping select values constant

throughout the bound computations. For various bound computations, the parameter

values shown in Table 5.1 were chosen to aid in computation, comparison and analysis.

For simplicity, the polarization ratio, p1, of the first point source is chosen to be aligned

with the polarizer (e.g. p1 = 1). For the dual-channel case, p11 is aligned with the

polarizer in channel one and orthogonal to channel two. The polarization ratio of the

second point source, p2 (or p12) is varied to allow for several diversity scenarios.

Table 5.1: Parameter Values for Bound Computation
Parameter Value
o1 1
o2 1
p1 1
p2 0.25, 0.5, 0.75
K Number of Frames 100
Matrix Size (pixels) 512 × 512
Aperture Size (pixels) 128 × 128

The units for the various parameter values are briefly considered. The object

parameter, o, is considered a brightness or intensity normally described in photon

counts when measured with optical detectors. However, the photo count unit is

dropped due to the transformation from laser speckle images to an autocorrelation

image. The transformation changes the positive integer data set, N to positive rational

numbers, Q+. The estimated object strength is related to the original object via a
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scale factor that is a function of LADAR range equation (laser power, distance, etc.),

detector integration time, aperture size, etc. Because of the transformation, photo

count is dropped and (scaled) intensity is considered. In any experimental detection

scenario, sufficient photo counts must be detected to produce fully formed speckle with

the appropriate distribution related to the illuminated object surface. This is assumed

to be properly accounted in system design. Extremely low light levels or partially

formed speckle conditions are not considered. The polarization ratio is, of course,

unitless since it is formed by a ratio of polarized and unpolarized object intensities.

The aperture size is detailed in number of pixels. Sample size may be computed from

matrix size and detection geometry. For resolution bound computations, matrix and

aperture size is selected without geometry consideration. It is assumed the sample

size is sufficient to meet critical sampling requirements for applicable geometries.

The last computation consideration is a separation (or matrix shift) value of

less than one pixel. This was accomplished using a MATLABr subroutine that

implemented a sub-pixel shift performed with the two-dimensional Digital Fourier

Transform. The routine implemented a digital representation of the Fourier Shift

Theorem [18]. A phase shift of less than one, (0 < a < 1), was introduced in the

Fourier domain producing a sub-pixel shift in spatial domain. This is essentially

restated as

g(x− a, y − b) = F−1

{
G(fx, fy) exp[−j2π(fxa+ fyb)]

}
. (5.73)

5.6.1 Single-Channel, Unpolarized System. Figure 5.2 depicts the com-

puted lower bound versus separation for the single channel case using the exponential

statistics model. The aperture size is maintained constant and only the separation

parameter is varied. This is the baseline for comparison with polarization diversity

cases.
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Figure 5.2: Resolution Bound vs. Separation for Single Channel Case

Correlography and phase retrieval performance does depend upon observing

aperture size. A larger aperture (and all other factors constant) provides smaller

sample size directly impacting resolution performance. Figure 5.3 demonstrates the

effect of changing the aperture size (in pixels). As depicted, the bound computation

performs as expected.
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Figure 5.3: Resolution Bound vs. Separation for Various Aperture Sizes

5.6.2 Two-Channel, Polarimetric System. Next, the resolution bound for

the two-channel system is computed and compared with the single channel system.

First, it will be assumed the unpolarized channel in the two-channel system has the

identical light level compared to what is collected in the single-channel system. Fig-

ure 5.4 depicts the computed bound for the two cases as a function of the separation

parameter, ∆. Note, the improvement demonstrated in the two-channel case is ex-

actly 10 times the bound of the single channel case. Because the computation was

performed with K = 100 frames, the improvement is exactly
√
K. This improvement

is directly related to the independence of the the two channels and the multiplicative

1/K factor in the variance computation. No significant change in performance was

observed by changing the polarization difference between the two point sources in the

two channel system. Therefore, the conclusion drawn from this result is the secondary

channel provides significant improvement if statistical independence is observed. It

90



can be surmised that partial dependence or correlation between the two channels

impedes the improvement and may be a subject of future research.
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Figure 5.4: Resolution Bound vs. Separation for One and Two Channel Cases

Only minute differences (∼ 10−7) are observed by changing the polarization

ratio of the second point. The minute changes do demonstrate slight improvement

when more light is observed (less suppression due to polarimeter effects). Due to

only very small computational differences, it is concluded polarization differences in

the object scene are not important for this simple two-point object model and the

two-channel system.

As detailed in Section 3.1.1, S + P results in a data set not statistically indepen-

dent from either S or P channel data. Therefore, the same bound computation was

repeated for the two-channel case with one-half the light level representative of collec-

tion with a non-polarizing beam splitter and polarization analyzer. The polarization

difference in the two points was maintained the same. The resulting bound curve

was found to be identical to Figure 5.4 as expected with an exponential noise model.

The SNR for an exponential noise model is exactly one (mean equal to standard de-
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viation); therefore, resulting bound computations are expected to be independent of

signal strength.

5.6.3 Dual-Channel, Polarimetric System. Figure 5.5 depicts the resolution

bound for the dual-channel system as a function of the separation parameter. Multiple

curves are shown with three different cases of polarization difference between the point

sources. Of important note, the closer the two point sources are in polarization ratio,

the more light is collected and the bound is improved (lower). It is clear from this

result, the polarization diversity scheme depends mostly upon statistical independence

in the data channels and less so on polarization difference between the point sources.

This result is specific to the two point source model; however, generalized conclusions

can be surmised. For complex objects, statistical independence in the data channels

is of primary importance in designing a polarimetric correlography system. Also,

detection schemes should be designed to maximize light levels. For example, a PBS

is superior to a standard, non-polarizing beam splitter with polarization analyzer due

to transmitted light levels.
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Figure 5.5: Resolution Bound vs. Separation for Dual Channel with Various Po-
larization States
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Figure 5.6 compares the performance of the two-channel system to the dual-

channel system for the same polarization difference. The two-channel system demon-

strates slightly better performance; however, this can be attributed to less amplitude

suppression due to the polarimeter effects in the observed data.
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Figure 5.6: Resolution Bound vs. Separation for Two Channel and Dual Channel
Cases (p11 = 1, p12 = 0.5)

The bound computations demonstrate both polarimetric systems outperform

the unpolarized system by a factor approximately equal to
√
K. This is primarily

due to statistical independence of the two observed data channels. Also, the bound

computations for the simple, two-point model demonstrate scene diversity (polariza-

tion difference) is not an important factor for reducing the variance of an unbiased

estimator. The phase retrieval problem is inherently ill-posed and estimators designed

to solve it may be biased. Quantifying bias remains an important area of study in

the field of phase retrieval.
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VI. Results and Analysis

This chapter provides simulation and experimental results generated using the algo-

rithms detailed in Chapter IV. An analysis of the results is provided with comparison

to a previously published algorithm [38].

6.1 Simulation Results

This section details the results of testing the Polarimetric EM Phase Retrieval

algorithm using simulated data. The simulated data consists of 100 frames per channel

of the object autocorrelations corrupted with statistically independent exponential

noise (see Appendix A). With the data formed in this manner, the signal-to-noise

ratio (SNR) for each individual frame is approximately one. The simulated object

was stored in a 128×128 discrete array with the object embedded within the support

region defined as the central 64 × 64 portion of the array.

The simulated object consisted of three horizontal bars of different strength with

each bar assigned a distinct polarization angle: bar one is zero degrees (θ1 = 0o), bar

two is 45 degrees (θ2 = 45o), and bar three is 60 degrees (θ3 = 60o). The distinct angle,

θ, represents fully polarized light oriented along the described angle measured from

the vertical axis. Figure 6.1 depicts the three bars with the described polarization

angles.
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Figure 6.1: Simulated Object Polarization: 3 Bars with Various Polarization Angles

The object autocorrelation was formed and then subjected to a random expo-

nential number generator for 100 statistically independent realizations of the noisy

autocorrelation. The data for the polarization channel was formed identically to the

unpolarized channel after computing the polarized version of the object, op = p× o.

The simulated polarization ratio was computed using the following equation:

p = cos2(φ− θ), (6.1)

where φ is the orientation angle of the polarizer and θ is the orientation angle of the

object element. Example data, with the polarizer transmission angle set to 90o, is

pictured in Fig. 6.2.
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Figure 6.2: Example Simulation Data: True Object (a),(c) and Average Autocor-
relation (b),(d) (K=100) for unpolarized channel and polarized channel [90o]

The Polarimetric EM algorithm and Schulz and Snyder’s single-channel, ML

phase retrieval algorithm [38] were both run under identical conditions for comparison.

The only difference being the addition of the polarized channel data and the initial

guess for the p matrix needed for the Polarimetric EM algorithm. The two algorithms

were run for 50 independent trials with randomly drawn initial guesses as described

in Section 4.3. Total image mean-squared error (MSE) [36] of the estimate, ô, is the

metric of choice for comparing simulated performance:

MSE(ô) = E[(o− ô)2]

∼= N−1
∑

x

[o(x) − ô(x)]2, (6.2)

where N is the total number of pixels.
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The iterative algorithm estimate is dependent upon the initial guess. Comparing

with identical iteration number, a slightly different estimate is provided for every

different initial guess. Because the autocorrelation is symmetric and bounded (image

goes to zero at boundary), the allowed solution set includes estimates related by

translation and 180o rotation. Therefore, registration of the recovered object with

the original object was performed before computing error measures. This effort used

a vector-based, energy-normalized, non-circular cross correlation technique for image

registration [2]. The error results from the 50 trials were averaged to form a final MSE

result. Each algorithm was allowed to run for a specified number of iterations before

stopping. The polarimetric EM algorithm was also run with the global stopping

criteria described in Section 4.4.

Figure 6.3 depicts the results of the MSE versus iteration number for both

algorithms with the polarizer transmission axis set to 90o. The EM polarimetric

algorithm converges faster and to a smaller MSE as compared to the ML single

channel algorithm. Figure 6.3 also depicts the need for the stopping criteria. By

adding polarization sensitivity to the sensor array, improvement in excess of 12 percent

is observed. Similar results were observed with the polarizer transmission axis rotated

to other angles.
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Figure 6.3: Simulated Error Results for Two Algorithms per Iteration Number
(K=100 frames)

Figure 6.4 shows performance versus number of laser speckle frames, K, related

to operational collection time. For the comparison in Fig. 6.4, the ML single-channel

algorithm was stopped after exactly 150 iterations and the polarimetric EM algorithm

stopped prior to 150 iterations near the optimum with β = 1.025. The stopping

mechanism can successfully stop the algorithm near the optimum iteration number.
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Figure 6.4: Simulated Error Results for Two Algorithms per Frame Number, K

The dual-channel algorithm is very similar but both observation channels are

polarized. Both channels provide polarized data but the transmission axis of the two

channels are orthogonal (90o rotation). The dual-channel algorithm was also tested

with simulated data and compared to the single-channel, ML algorithm and the two-

channel EM algorithm. Figure 6.5 depicts the simulated results as a function of iter-

ation number. For the simple, 3 bar object, the dual-channel algorithm also provided

improvement over the single-channel non-polarized ML algorithm. The dual-channel

algorithm estimated the two-dimensional object with less MSE and fewer iterations.

The stopping criteria was also successfully implemented with the dual channel al-

gorithm. With proper selection of the dampening parameter, β, the algorithm can

be stopped near the optimum iteration number or prior to the fixed 150 iterations.

Figure 6.6 depicts the simulated error results as a function of frame number, K. Com-

parison to the single-channel, ML algorithm was accomplished with a fixed iteration

number of 150. The stopping mechanism is very sensitive to the selection of β and

further analysis is needed to determine a method for selecting the optimum β.

The dual-channel algorithm averages the estimator results for each channel (see

Eqn. 4.56). This fusion of the two separate data sets can be problematic if the data
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sets are not aligned or registered. A simple image registration routine was employed

prior to adding the estimates in the two channels. Further improvement may be

obtained with better data fusion techniques.
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Figure 6.5: Simulated Error Results for Three Algorithms per Iteration Number
(K=100 frames)

100



10 20 30 40 50 60 70 80 90 100
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Frames, K

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
ML One Channel, 150 Iterations
EM Two Channel, β=1.025
EM Dual Channel, β=1.001

Figure 6.6: Simulated Error Results for Three Algorithms per Frame Number, K

6.2 Experimental Results

In order to validate the theoretical work and computer simulations, a simple

laser speckle experiment was performed. The polarimetric phase retrieval algorithm

successfully recovered a three bar object from a series of noisy autocorrelations formed

from collected laser speckle images.

The laboratory experiment was conducted with available laboratory hardware.

The laboratory experiment is not completely representative of the (proposed) large-

scale system designed to recover remote satellite images; however, it does serve to

reinforce the theory and development presented in this research. The choice of labo-

ratory hardware was purely out of convenience and availability. Much improvement

in experimental performance is available via hardware and experimental design. Even

so, the chosen laboratory hardware does perform reasonably similar in function to the

proposed sensor system.

A traditional charge-coupled device (CCD) camera and polarizing film was used

to observe two channels of data from a coherently illuminated object. For this lab-
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oratory experiment, the hardware configuration is simplified by using a continuous

wave (CW) source vice a pulsed laser source. Sufficient light level is achieved by

appropriate integration time at the camera.

The laboratory setup is depicted in Fig. 6.7. The test sensor consists of a Pho-

tometrics Cascade 512B camera without a lens, with removable polarization analyzer

placed in front of the camera aperture. The camera is an electron-multiplying charge-

coupled device sensor. The camera array is 512 × 512 pixels with a 16µm pitch. A

spatially coherent source at 630 nm was used to back illuminate a target set. A laser

line filter at 630 nm was inserted at the camera aperture to minimize background

light.

Figure 6.7: Diagram of Laboratory Setup

The target set consists of a glass plate completely opaque where no object

exists and transparent where the object exists. The experimental object consisted

of three identically sized bars. To emulate polarization effects, the side opposite

illumination of two of the bars were covered with polarizing film aligned to the same

axis. To emulate random surface roughness, a randomizing phase screen was placed

between the source and the bar target consisting of highly fibrous, white paper. The

paper phase screen was moved for each collection frame to emulate random phase

perturbations and produce statistically independent laser speckle images.

The propagation path included a 0.5m lens at the target plane to emulate far-

field (or Fraunhofer) propagation to the camera array plane. Laser power was not
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a consideration as the source was placed near the target plane. Camera integration

time was selected after several preliminary tests and then held constant throughout

the experiment.

For extremely remote sensing such as imaging of space-borne objects, the over-

all path length is very large compared to distance where atmosphere turbulence is

encountered enabling us to consider the atmospheric turbulence as a single, uniformly

distributed phase screen. In this research, a layered atmosphere and scintillation are

not considered. Experimentally, a small path length is used to ensure only uniform

atmosphere is encountered.

In an operational system with LADAR backscatter, the target geometry, sur-

face roughness and propagation distances typically produce the desired laser speckle

effects. For the laboratory experiment, the paper phase screen enabled experimen-

tation using back illumination and simplified the overall experiment. See Ref. [44]

for experimentation with a backscatter setup. The paper phase screen produced low

light-levels where read noise dominates the detection process, though sufficient for the

experiment. However, the paper did exhibit spatially dependent surface roughness

for the spatial sampling size produced by the camera. The correlography technique

assumes spatially independent surface roughness (see Sec. 1.2.1). To overcome the

effects of spatially dependent surface roughness and low-light levels, each 512 × 512

laser speckle image was segmented into 16, 128 × 128 laser speckle images. Each

128× 128 laser speckle image contains the statistical nature of the target and can be

processed independently. Target spatial resolution is lost but SNR is improved by a

factor of four and spatially independent surface roughness is gained due to coarser

sampling in the target plane. In order to minimize reflections from lab equipment

and background light, the propagation path was enclosed in a light baffle. An image

of the back illuminated target taken with the test camera (with lens and without

polarizer) of the bar target is shown in Fig. 6.8. The image depicts the bright center

bar and the two side bars with reduced brightness due to the effects of the polarizing

film.
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Figure 6.8: Image of Back Illuminated Bar Target Set

Figure 6.9 depicts the recovered image using the polarimetric phase retrieval

algorithm. The recovered image was produced after 28 iterations. The three bar

target set is clearly depicted with the side bars reduced in intensity compared to

the center bar. Figure 6.10 depicts the recovered image using the single-channel

algorithm developed by Schulz and Snyder [38]. For visual comparison, this image

was 28 iterations and using the same starting guess as the two-channel solution. For

the single-channel, Schulz-Snyder algorithm and the same iteration number, three

bars are clearly discernable; however, the bar shape is more rounded and less defined

compared to the two-channel polarimetric algorithm.
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Figure 6.9: Recovered Image From Experimental Data; Two-Channel Algorithm,
28 Iterations

Figure 6.10: Recovered Image From Experimental Data; Single-Channel Algorithm,
28 Iterations
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VII. Conclusion

Previous chapters presented a detailed background and motivation for correlography

and phase retrieval that may be employed in a specific remote sensing scenario. This

research is primarily motivated by the need to produce two-dimensional images of

remote satellites from earth-bound sensors. For satellites located at geosynchronous

orbit, traditional imaging schemes are inadequate to overcome distance and atmo-

spheric distortion. Additionally, remote sensing of the earth’s surface from space-

borne systems may also be improved. The primary motivation for considering pupil

plane imaging is that very large apertures can be synthesized with a large collection

of simple, inexpensive detector elements without a monolithic lens. The correlog-

raphy technique using pupil plane imaging coupled with appropriate phase retrieval

algorithms has shown potential to provide cost effective systems for defeating dis-

tance and atmospheric hurdles. This research provided a new investigative initiative

to solve this difficult problem. This chapter concludes the main document by pro-

viding an overall summary of research activities, a summary of key findings, and

recommendations for subsequent research.

7.1 Research Summary

This dissertation provides three new research contributions. First, this research

demonstrated an appropriate statistical model for the transformed or processed pupil

plane data. Pupil plane laser speckle is transformed by computer processing to pro-

duce images related to noisy object autocorrelations. The statistics of the non-imaged

laser speckle is well studied and understood; however, the Fourier-transform, magni-

tude squared operation produces the noisy autocorrelation data with different statis-

tics. This document provides an appropriate mathematical model and associated

analysis demonstrating the exponential distribution either exactly describes or well

approximates the statistics of the two-dimensional, transformed data image. This

result has not been published prior to this research. This is an important result if a
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statistical based estimation effort is to be considered for this particular phase retrieval

problem. Also, the exponential noise model has implications for system design, pri-

marily related to SNR. With each observed data frame having an SNR approximately

equal to one, SNR is improved most directly by increasing observations requiring more

operational collection time required. The negative exponential noise model for the

noisy autocorrelation data is used throughout this dissertation to include producing

data for simulation efforts. An iterative algorithm using the exponential model was

explored without success in Chapter III. However, the model was successfully used

throughout the research to include a theoretical lower bound on resolution for phase

retrieval from correlography data.

Secondly, this research provides a new correlography and phase retrieval method

using polarization diversity. Image recovery using polarization diversity has been ac-

complished previously with traditional imaging systems. Employing multi-channel

diversity in pupil plane imaging and correlography systems has been previously sug-

gested [23, 24]; however, this research demonstrated a novel approach. Also, a case

was made here for a simpler detection system compared with previously suggested sys-

tems. Only direct-detected intensity measurements are required rather than difficult

field cross products. Using active illumination with polarized laser-light, man-made

object scenes can produce polarization diverse reflections and scattering. Observing

these effects provides additional information about the object scene enabling improved

estimation efforts in the ill-posed phase retrieval problem. Adding a secondary ob-

servation channel with polarization sensitivity demonstrates improvement over single

channel, polarization insensitive schemes. Two different collection schemes were in-

vestigated for polarization sensitivity.

The two collection schemes motivated two iterative algorithms developed us-

ing an EM approach. A new technique for correlography, borrowed from traditional

image recovery [43], used a polarization parameter to relate polarimetric data to non-

polarized data. This added, unknown parameter, has the potential for improving the

ratio of equations to unknown variables because the relationship between the object
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and the polarized object data is known via the chosen mathematical model. The EM

algorithm method provides a maximum-likelihood solution with the associated con-

vergence properties. Two separate EM algorithms were presented and investigated

with simulation and laboratory data. The first algorithm coupled unpolarized channel

data and polarized channel data. The first algorithm employed a prior distribution

for the polarization ratio to aid the solution for the unknown object estimate. The

second algorithm employed two channels both sensitive to polarization but related

by 90o or orthogonal in orientation. A previously published idea for algorithm stop-

ping [31] was demonstrated to successfully stop both algorithms near an optimum

iteration number. A laboratory experiment was used to demonstrate the validity of

approach. Experimental results were obtained from a basic laboratory setup for the

first, two-channel algorithm. The phase-retrieval problem still remains ill-posed and

computationally difficult; however, adding polarization sensitivity can provide sig-

nificant (greater than 10%) improvement over polarization insensitive schemes. An

operational system may be developed with available, off-the-shelf technology.

The third research contribution, a lower bound on resolution was demonstrated

for phase retrieval with both polarization sensitive and insensitive systems. Previous

to this research, bounds on recovered image resolution have been demonstrated for

traditional imaging systems obscured by atmospheric distortion; however, this has

not previously been done for non-imaging, pupil plane systems. A lower bound on

object intensity error for phase retrieval has been demonstrated for a generic, Gaus-

sian model [5]; however, this research used a more accurate statistical model and

provides resolution as a measure of goodness for prospective phase retrieval systems.

The computed lower bound on resolution enables comparison between polarization

sensitive and insensitive systems. Comparing the computed lower bound on resolu-

tion for a simple object model, this research demonstrated theoretical improvement

with the introduction of polarization sensitive channel(s). Statistical independence

or statistical diversity is of primary concern for multiple data channels.
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7.2 Recommendations for Future Research

The addition of polarization diversity is shown to improve the phase retrieval

problem. Additional research efforts may further improve this difficult problem lead-

ing to a cost effective system for imaging remote satellites at geosynchronous orbit.

Suggested follow-on efforts include:

• Investigate additional object scene diversity such as range. Range diversity

data would require a three-dimensional LADAR system. Data collection in a

third dimension may possibly transform this effort to a well-posed, or even an

over-determined problem.

• Investigate a three-channel polarimetric system in hopes of improving perfor-

mance with additional statistical diversity. A three channel system may include

an unpolarized data channel coupled with two orthogonally polarized data chan-

nels.

• Further investigation into solving the conditional expectation step in the EM

process for the exponential distribution is warranted. Providing an EM algo-

rithm with the exponential density function may provide additional improve-

ment over the Poisson model.
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Appendix A. Proof of Equation 2.1

The development found in this appendix is primarily from [4]. This appendix pro-

vides the proof of Eqn. 2.1. A question arises: Does averaging the non-imaged

laser speckle intensity data over many independent realizations achieve

useful information about the object? This development demonstrates that no

useful information is obtained by averaging nonimaged laser speckle patterns. This

development ignores photon noise, detector read noise, and dark current noise dealing

only with speckled intensity data.

Theorem:

lim
K→∞

K−1

K∑

k=1

Ik(u) = C (a constant) (A.1)

where K is the number of collected frames, u is the two-dimensional coordinate vector

in the observation or pupil plane, and Ik is kth frame of the observed laser-speckle

intensity or pupil-plane data.

Proof:

As previously stated, the intensity at the observation plane is described by

I(u) = | Fλz {f(x)} |2 (A.2)

and the complex field at the object plane, f(x), is modelled by

f(x) = a(x)ejφ(x). (A.3)

where φ is random object phase uniformly distributed, U ∼ [−π, π] and x is a two-

dimensional coordinate vector in the observation or pupil plane. With the scaled

Fourier Transform for Fraunhofer propagation and A.3, the field at the pupil plane is
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F (u) =

∫
∞

−∞

a(x)ejφ(x)e−j2πux/λz dx, (A.4)

where λ is the optical wavelength of the illuminating field and z is the perpendicu-

lar propagation distance. Taking the magnitude squared of Eqn. A.4, produces the

observation plane intensity:

I(u) =

∫
∞

−∞

∫
∞

−∞

a(x1)a(x2)e
jφ(x1)e−jφ(x2)e−j2πu(x1−x2)/λz dx1dx2, (A.5)

where x1 and x2 are independently indexed two-dimensional coordinate vectors. To

satisfy Equation A.1, the ensemble average of Equation A.5 is taken and with a large

number of independent laser speckle patterns is equal to the Expected Value operator.

lim
K→∞

K−1

K∑

k=1

Ik(u) = E[ Ik(u) ] (A.6)

It is assumed independent speckle realizations are produced by minute changes in the

angle or phase of the illumination for each laser pulse. Taking the expected value of

the intensity yields the following:

E[I(u)] = E

[∫
∞

−∞

∫
∞

−∞

a(x1)a(x2)e
jφ(x1)e−jφ(x2)e−j2πu(x1−x2)/λzdx1dx2

]
. (A.7)

Using linearity, the expected value operator is carried inside the double integral oper-

ation. Also, the amplitude of the reflected field, a is not random and is not included

within the Expectation operator.

E[I(u)] =

∫
∞

−∞

∫
∞

−∞

a(x1)a(x2)E
[
ejφ(x1)e−jφ(x2)

]
e−j2πu(x1−x2)/λzdx1dx2 (A.8)
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Analyzing just the expected value operation, this is easily computed. It is assumed

the surface roughness at one point on the object surface is independent from every

other point on the object surface. Because of this assumption, φ(x1) and φ(x2) are

statistically independent when x1 6= x2. The Expected Value Operation becomes:

E[ejφ(x1)] · E[e−jφ(x2)], when x1 6= x2 (Case 1 ) (A.9)

E[ej(φ(x,t)−φ(x,t))] = E[ej0] = 1, when x1 = x2 (Case 2 ). (A.10)

Further analysis on Case 1 above and the use of Euler’s identity yields the following

relationship:

E[ejφ] = E[cos(φ) + j sin(φ)] = E[cos(φ)] + jE[sin(φ)]. (A.11)

Finally, assuming the random surface roughness of the object imparts a uniformly

distributed phase, φ(x) ∼ U(−π, π), we can compute the result of Case 1.

E[cos(φ)] =

∫ π

−π

(
1

2π

)
cos(φ) dφ = 0 (A.12)

E[sin(φ)] =

∫ π

−π

(
1

2π

)
sin(φ) dφ = 0 (A.13)

Therefore, Case 1 results in zero and Case 2 results in exactly one. This can be

denoted with the Dirac delta function, δ. Substituting the Expected Value result

back into Equation A.8 results in
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E[I(u)] =

∫
∞

−∞

∫
∞

−∞

δ(x1 − x2)a(x1)a(x2)e
−j2πu(x1−x2)/λzdx1dx2. (A.14)

Using the sifting property of the delta function simplifies Equation A.14 to the fol-

lowing:

E[I(u)] =

∫
∞

−∞

a2(x1)e
−j2πu·(0) dx1

=

∫
∞

−∞

a2(x1) dx1. (A.15)

Analyzing the Equation A.15, the integral is carried out only over the finite region ε̂,

illuminated by the laser beam (this is the beam limited scenario):

∫

ε̂

a2(x) dx = C. (A.16)

C is a constant equal to the object intensity or brightness function summed up within

the region of laser illumination. Therefore concluding the proof, it is determined that

Eqn. A.1 is true.

lim
K→∞

K−1

K∑

k=1

Ik(u) = C, (a constant) (A.17)

From this proof of Equation 2.1, it is determined that averaging nonimaged laser

speckle data collected at the pupil plane over many pulses yields a constant value.

The processed data will report no information related to the remote object as the

resulting image will be completely washed out.

With an ergodicity assumption, this result is also achieved if one performs

a time average of a single speckled intensity collected over a very long integration
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period. This would be achieved with a long exposure detection and illumination with

a Continuous Wave laser with a very short coherence time.
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Appendix B. Proof of Equation 2.2

This appendix provides the proof of Eqn. 2.2. This result first appeared in [25]

with a formal proof documented in [31]. Schulz also briefly develops this result [39].

Both [31] and [39] are missing a term in the solution; therefore, the constants are

incorrectly estimated. The published results also ignore the photon noise generated

during detection and is included in this appendix. The development found here is

primarily from Phillips [31]. This proof includes photon noise, provides the missing

mathematical steps not found in Ref. [31] and includes the missing term.

Theorem:

lim
K→∞

K−1

K∑

k=1

[ |F−1{Iok
(u)}|2 ] = b |h (x)|2 + c [RO (x)] ∗ |h(x)|2 (B.1)

F−1 is the inverse Digital Fourier Transform (DFT) that is performed in the computer

on each realization of the observed, speckled Intensity data, Io. With a large number

of laser speckle patterns, we replace the average operation with the expected value

operator.

lim
K→∞

K−1

K∑

k=1

[ |F−1{Io(u)}|2 ] ≡ E[ |F−1{Io(u)}|2 ] (B.2)

Proof:

The electric field at the object plane is described as

f(x, t) = a(x, t) · ejφ(x) (B.3)

where t is the time parameter, x = (x, y) is a two dimensional spatial vector in

the object plane, φ(x) is the phase directly related to the object surface, and a(x)
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is the field amplitude. We are assuming the field amplitude is unknown but not

random; however, the phase is a random function dependent upon the object surface

height profile. The phase produced by each laser pulse is assumed to be statistically

independent pulse to pulse due to minute changes in the laser illuminating source

(angle, position, etc.) and environment (atmosphere).

The instantaneous intensity at the observation plane without noise is described

by

I(u) = | Fλz{f(x)} |2 (B.4)

where Fλz is a continuous, scaled Fourier Transform representing Fraunhofer propa-

gation of the object field to the observation plane. The observed intensity (measured

through optical detection devices) is formed by a doubly stochastic process distributed

as negative binomial (see Section 3.4). The observed Intensity data is modeled as

Io(u) = [I(u) + n(u)] · A(u) (B.5)

where A(u) is the aperture function denoting the region where the speckle pattern is

physically recorded; A(u) = 1 for the points within the measurement aperture and

A(u) = 0 elsewhere. This is a real function with no complex phase term. Also, n(u)

represents photon or shot noise, a zero mean noise such that the observed intensity

(conditioned on the average photon values) has a Poisson distribution with a mean

equal to the intensity without photon noise. The probability density function of the

noise function, n, is unknown. However, the noise is caused by the random arrival of

the photons as they emerge from the optical wavefront onto the detector device. The

previously published work on proving Eqn. 2.2 does not include this noise term. We

include it here for completeness. This development does ignore other system noise

such as pre-amplifier (read) noise and dark current noise.

116



E[ |F−1{Io(u)}|2 ] = E[| F−1{A(u)[I(u) + n(u)]} |2]

= E[ F−1{A(u1)[I(u1) + n(u1)]}

× F{A(u2)[I
∗(u2) + n∗(u2)]} ] (B.6)

Taking the DFT, multiplying the two terms, and distributing the expected value

Operator leads to the next equation.

E[ |F−1{Io(u)}|2 ] =
N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2)E[I(u1)I
∗(u2)] exp{j2πw(u1 − u2)/N}

+
N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2)E[I(u1)n
∗(u2)] exp{j2πw(u1 − u2)/N}

+
N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2)E[I∗(u2)n(u1)] exp{j2πw(u1 − u2)/N}

+
N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2)E[n(u1)n
∗(u2)] exp{j2πw(u1 − u2)/N} (B.7)

We will first investigate the last three terms of Eqn. B.7 involving noise. The cross

terms are equal and exactly zero because the noise, n(u) is independent of the inten-

sity, I(u) and the noise is zero mean. The noise, n(u), is generated by the random

arrival of the photons at the detector surface and the intensity, I(u) is random due

to the uniformly random height profile of the object surface. Because of this, we can

state unequivocally the photon noise is independent of the random phase.

E[I(u1)n
∗(u2)] = E[I(u1)]E[n∗(u2)] = 0 (B.8)

E[I∗(u2)n(u1)] = E[I∗(u2)]E[n(u1)] = 0 (B.9)
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The last term of Eqn. B.7 involves the autocorrelation of the noise. Assuming the

noise at each detector element is statistically independent from the noise at all other

detector elements, leads to the result in Eqn. B.10 where, δ is the Dirac delta function

and σ2
n is the noise power or noise variance.

E[n(u1)n
∗(u2)] = σ2

n · δ(u1) (B.10)

Substituting the result in Eqn. B.10 back into the last term of Eqn. B.7 produces the

contribution due to photon noise. The sifting property of the Dirac delta function

simplifies the equation. Also, the Fourier Transform of the aperture function is a

Dirac function at the origin.

N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2)σ
2
nδ(u1) exp(j2πw(u1 − u2)/N)

= σ2
n

N−1∑

u2=0

A(u2) exp(−j2πwu2/N)

= σ2
nδ(u)

(B.11)

The above simplifications of the noise terms simplifies Eqn. B.7 to the following

equation.

E[ |F−1{Io(u)}|2 ] =
N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2)E[I(u1)I
∗(u2)] exp(j2πw(u1 − u2)/N)

+ σ2
nδ(u) (B.12)

Most of the previously published work ignores the added noise term. To com-

plete our analysis of the Idell function, the noise term is temporarily put aside to
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compute the first term without noise. We will first compute the autocorrelation of

the speckle intensity without photon noise.

RI(u) = E[I(u1)I
∗(u2)] (B.13)

We will begin expanding the equation by analyzing the intensity at the observation

plane.

I(u) =

∣∣∣∣
∫

∞

−∞

a(x) · ejφ(x) · e−j2π xu

λz dx

∣∣∣∣
2

(B.14)

where u = (u, v) is a two dimensional spatial vector in the observation plane, λ

is the wavelength, and z is the propagation distance from object to the observation

plane. Expanding Equation B.13 enables one to exchange the order of integration and

distribute the Expected value operator inside the Fourier integrals. Only the phase

term of the reflected field is random and subject to the expected value operator.

RI(u) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

a(x1)a(x2)a(x
′

1)a(x
′

2)E[ ejφ(x1)e−jφ(x2)e−jφ(x
′

1)ejφ(x
′

2) ]

×e−j2π
x1u1

λz ej2π
x2u1

λz ej2π
x

′

1u2
λz e−j2π

x

′

2u2
λz dx1dx2dx

′

1dx
′

2 (B.15)

Analyzing just the expected value operation within Equation B.15, yields the term Ψ

defined as:

Ψ(x1,x2,x
′

1,x
′

2) = E[ ejφ(x1)e−jφ(x2)e−jφ(x
′

1)ejφ(x
′

2) ]. (B.16)

There are 5 cases for evaluating Ψ.

1. x1 6= x2 6= x
′

1 6= x
′

2

2. x1 = x2 = x
′

1 = x
′

2
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3. x1 = x
′

2 and x2 = x
′

1 and x1 6= x2

4. x1 = x
′

1 and x2 = x
′

2 and x1 6= x2

5. x1 = x2 and x
′

1 = x
′

2 and x1 6= x
′

1

Case 1. If all spatial vectors are not equal, then we assume the phase terms are

statistically independent. Because the four phase terms are independent, Ψ becomes

Eqn. B.17. Because the phase, φ, of this random process is assumed to be uniformly

distributed, ∼ U [−π, π], E[ejcφ] is exactly zero (c is any integer).

Ψ1 = E[ ejφ(x1) ] · E[ e−jφ(x2) ] · E[ e−jφ(x
′

1) ] · E[ ejφ(x
′

2) ] = 0 (B.17)

Case 2. If all spatial vectors are equal, then the exponents add to zero and

the expected value operator yields one, denoted with the Dirac delta function for the

specific condition.

Ψ2 = E[ e(jφ(x1)−jφ(x1)−jφ(x1)+jφ(x1)) ]

= E[ej·0]

= δ(x1 = x2 = x
′

1 = x
′

2) (B.18)

Case 3. For the spatial vectors that are equal, the exponents add together.

For the spatial vectors not equal, the expected value operator can be factored into

a product of two separate expected value operations due to statistical independence.

Again, E[ecjφ] = 0.
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Ψ3 = E[ e(j2φ(x1)−j2φ(x2)) ]

= E[ej2φ(x1)] · E[e−j2φ(x2)]

= 0 (B.19)

Case 4. This case is similar to Case 3 as it factors into two separate expected

value operations; however, the result of the expected value operator is one, as in Case

2. This is also denoted with the Dirac delta function; however, we must be careful to

ensure we do not mathematically duplicate Case 2.

Ψ4 = E[ e(jφ(x1)−jφ(x2)−jφ(x1)+jφ(x2)) ]

= E[ej·0] · E[ej·0]

= δ(x1 − x
′

1, x2 − x
′

2), (x1 6= x2) (B.20)

Case 5. This case is the same as Case 4. This is also denoted with the Dirac

delta function. We must be careful to ensure no duplication with Case 2.

Ψ5 = E[ e(jφ(x1)−jφ(x1)−jφ(x
′

1)+jφ(x
′

1)) ]

= E[ej·0] · E[ej·0]

= δ(x1 − x2, x
′

1 − x
′

2), (x1 6= x
′

1) (B.21)

Non-zero results are obtained from Cases 2, 4, and 5. Cases 1 and 2 do not

contribute to the equation. Substituting the Dirac delta functions back into Equation

B.15 will enable some simplifications. The sifting property of the Dirac delta function

will reduce variables and integrands.
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RI(u) =

∫
∞

−∞

∫
∞

−∞

a2(x1)a
2(x2)e

−j2πx1
(u1−u2)

λz ej2πx2
(u1−u2)

λz dx1dx2

+

∫
∞

−∞

∫
∞

−∞

a2(x1)a
2(x

′

1)dx1dx
′

1 −
∫

∞

−∞

a4(x1)dx1 (B.22)

The first two terms in Equation B.22 are from Cases 4 and 5, respectively. The third

term is from Case 2 and must be subtracted once because it appears as a special

case in both the first and second terms. The results from Cases 2, 4, and 5 are now

accounted for without duplication. Note, Term 3 is the missing term not found in

previously published papers. Now that we have Equation B.22, the autocorrelation of

the intensity, we substitute this result back into Eqn. B.12. We will ignore the noise

term temporarily and add it back in at the end of this proof. Each term is dealt with

separately.

E[ |F−1{Îo(u)}|2 ] =
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

∫
∞

−∞

A(u1)A(u2)a
2(x1)a

2(x2)

×e−j2πx1
(u1−u2)

λz ej2πx2
(u1−u2)

λz exp(j2πw(u1 − u2)/N)dx1dx2

+
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

∫
∞

−∞

A(u1)A(u2)a
2(x1)a

2(x
′

1) exp(j2πw(u1 − u2)/N)dx1dx
′

1

−
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

A(u1)A(u2)a
4(x1) exp(j2πw(u1 − u2)/N)dx1 (B.23)

Term 1. We will simplify the integral with substitution of variables. If we let

x0 = x1 − x2, Term 1 becomes

T1 =
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

∫
∞

−∞

A(u1)A(u2)a
2(x0 + x2)a

2(x2)e
−j2πx0

(u1−u2)
λz

× exp(j2πw(u1 − u2)/N)dx0dx2
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=
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

[∫
∞

−∞

a2(x0 + x2)a
2(x2)dx2

]
A(u1)A(u2)e

−j2πx0
(u1−u2)

λz

× exp(j2πw(u1 − u2)/N)dx0

=
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

Ro(x0) A(u1)A(u2)e
−j2πx0

(u1−u2)
λz

× exp(j2πw(u1 − u2)/N)dx0 (B.24)

where Ro(x0) is considered the autocorrelation of the object intensity with a spatial

difference, x0. We will continue to group terms and simplify.

T1 =
N−1∑

u1=0

N−1∑

u2=0

[∫
∞

−∞

Ro(x0)e
−j2πx0

(u1−u2)
λz dx0

]
A(u1)A(u2)

× exp(j2πw(u1 − u2)/N) (B.25)

Analyzing just the term in brackets, it is a scaled Fourier Transform of the intensity

autocorrelation which is defined as |Fo(ξ)|2. Note, since Ro is a symmetric function

about the origin, its Fourier Transform is symmetric.

∫
∞

−∞

Ro(x0)e
−j2πx0

(u1−u2)
λz dx0 ≡

∣∣∣∣Fo
(

u1 − u2

λz

)∣∣∣∣
2

(B.26)

Plugging this result back into Term 1 yields

T1 =
N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2)

∣∣∣∣Fo
(

u1 − u2

λz

)∣∣∣∣
2

exp(j2πw(u1 − u2)/n). (B.27)
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Using variable substitution, let u0 = u1 − u2.

T1 =
N−1∑

u1=0

N−1∑

u2=0

A(u0 + u2)A(u2)
∣∣∣Fo
(u0

λz

)∣∣∣
2

exp(j2πwu0/N) (B.28)

Next, group terms as we have previously done.

T1 =
N−1∑

u1=0

[
N−1∑

u2=0

A(u0 + u2)A(u2)

] ∣∣∣Fo
(u0

λz

)∣∣∣
2

exp(j2πwu0/N)

=
N−1∑

u1=0

RA(u0)
∣∣∣Fo
(u0

λz

)∣∣∣
2

exp(j2πwu0/N) (B.29)

where RA(u0) is the autocorrelation of the aperture function with a spatial difference

of u0. If we ignore the normalization constant, this is recognized as the diffraction-

limited Optical Transfer Function (OTF), H. Also, after ignoring the normalization

constant, the inverse Fourier Transform of the OTF is the Point Spread Function

(PSF) or impulse response multiplied by a constant [18].

H(ν) =

∫
∞

−∞

A(u)A(u0 + u)du = RA(u0) (B.30)

|h(w)|2 =
1

(λz)2

∫
∞

−∞

RA(uo) exp(−j 2π
λz

wuo)duo (B.31)

F−1{H(ν)} = (λz)2 |h(λzw)|2 (B.32)

Finally, for Term 1, we recognize that Equation B.29 is an inverse Fourier Trans-

form of the product of two symmetric functions. Applying symmetry and the convolu-

tion theorem of the Fourier Transform yields Eqn. B.33. We have the autocorrelation

of the object brightness function imbedded within our result.
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T1 = (λz)2Ro (λzw) ∗ |h(λzw)|2

= cRo(x) ∗ |h(x)|2 (B.33)

Here in this result, c = (λz)2 and x = λzw. Therefore, Term 1 is a constant factor

times the impulse response convolved with the scaled autocorrelation of the object

intensity.

Term 2. We can simplify the integration by using another substitution of

variables, similar to what was done for Term 1. Let x0 = x1 − x
′

1.

T2 =
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

∫
∞

−∞

A(u1)A(u2)a
2(x1)a

2(x
′

1) exp(j2πw(u1 − u2)/N)dx1dx
′

1

=
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

[∫
∞

−∞

a2(x0 + x
′

1)a
2(x

′

1)dx
′

1

]
A(u1)A(u2) exp(j2πw(u1 − u2)/N)dx0

=
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

Ro(x0)A(u1)A(u2) exp(j2πw(u1 − u2)/N)dx0 (B.34)

Again, Ro(x0) is the autocorrelation of the object intensity with spatial difference,

x0. Using another substitution of variables, let u0 = u1 − u2 and group terms.

T2 =

N−1−u2∑

u0=−u2

N−1∑

u2=0

∫
∞

−∞

Ro(x0)A(u0 + u2)A(u2) exp(j2πwu0/N)dx0

=

∫
∞

−∞

Ro(x0)dx0

N−1−u2∑

u0=−u2

N−1∑

u2=0

A(u0 + u2)A(u2) exp(j2πwu0/N)

=

∫
∞

−∞

Ro(x0)dx0

[
N−1∑

u0=0

RA(u0) exp(j2πwu0/N)

]
(B.35)
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where RA(u0) is the autocorrelation of the aperture function with a spatial difference

of u0. Again, this is recognized as the diffraction-limited Optical Transfer Function

(OTF), H, ignoring the normalization factor. As stated previously, the inverse Fourier

transform of the OTF is the scaled impulse response. Next we will define SR as the

total sum of the object intensity autocorrelation. This is a constant value since the

object intensity is finite in extent due to the beam limited scenario.

SR =

∫
∞

−∞

Ro(x0)dx0 (B.36)

Finally, for Term 2, we are able to simplify to an easily described equation.

T2 = SR · (λz)2 |h (λzw)|2

= SR · c |h (x)|2 (B.37)

Term 3. Term 3 is the missing term not found in published literature. We will

simplify Term 3 by first defining a term of summed object intensity squared, SI2 .

SI2 =

∫
∞

−∞

a4(x)dx (B.38)

This is a constant term and can be factored outside any remaining integrands. We

realize this quantity is finite since we are in a beam limited scenario. Returning to

Term 3 and rearranging terms to identify the summed intensity squared term we find

the following:
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T3 = −
N−1∑

u1=0

N−1∑

u2=0

∫
∞

−∞

A(u1)A(u2)a
4(x1) exp(j2πw(u1 − u2)/N)dx1

= −
N−1∑

u1=0

N−1∑

u2=0

[∫
∞

−∞

a4(x1)dx1

]
A(u1)A(u2) exp(j2πw(u1 − u2)/N)

= − SI2
N−1∑

u1=0

N−1∑

u2=0

A(u1)A(u2) exp(j2πw(u1 − u2)/N) (B.39)

We will continue the simplification with a substitution of variables by letting

u0 = u1 − u2 and rearranging terms.

T3 = −SI2
N−1−u2∑

u0=−u2

N−1∑

u2=0

A(u0 + u2)A(u2) exp(j2πwu0/N)

= −SI2
N−1∑

u0=0

RA(u0) exp(j2πw(u0)/N) (B.40)

Again, RA(u0) is the autocorrelation of the aperture function with a spatial difference

of u0 or the diffraction-limited OTF without the normalization factor. Recognizing

the last equation is an inverse Fourier Transform of the OTF, Term 3 simplifies to

T3 = −SI2 · (λz)2|h(λzw)|2

= −SI2 · c|h(x)|2. (B.41)

The constants from Terms 2 and 3 can be combined into a single constant, b.

b = c

[∫
∞

−∞

Ro(x)dx −
∫

∞

−∞

a4(x)dx

]
(B.42)

127



Finalizing the Idell Function. Combining the three terms together to yield

the final result for E[|F−1{Io(u)}|2] (ignoring photon noise) produces the final equa-

tion.

E[|F−1{Io(u)}|2] = b |h (x)|2 + c [Ro (x)] ∗ |h(x)|2 (B.43)

Therefore, the published result is proven. However, the constant, b, is not defined

correctly in previous literature due to the missing term defined above.

Adding the noise term due to photon noise, the final result is given by

E[|F−1{Io(u)}|2] = b |h (x)|2 + c [Ro (x)] ∗ |h(x)|2 + σ2
nδ(x). (B.44)
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Appendix C. Proof of Exponential Statistics for the Processed Data

This appendix details the proof for the transformed laser speckle data or noisy auto-

correlations distributed as exponential with a mean equal to the autocorrelation of the

true object. This proof assumes each laser speckle image is statistically independent

spatially.

A single image of laser speckle data is approximated very well to be distributed

as negative binomial [17]. In most detection schemes, the speckle will exhibit small,

localized correlation; however, for this proof we will assume that each point in the

laser speckle image is statistically independent. To form the autocorrelation data,

each of the observed laser speckle intensity images are post-processed by DFT and

magnitude squared operations. To prove the statistics of the processed data, this

section follows Goodman’s treatment of random phasor sums [17].

Each point in the intensity data is a real-valued but random number (phase

equal to zero). The Fourier Transform kernel provides a complex but known phasor.

For this analysis we will assume the two-dimensional data image is N × N with N

sufficiently large to utilize the Central Limit Theorem. The sum of a large num-

ber of independent random variables (in this case, the random intensity values) is

asymptotically Gaussian as N → ∞ [17].

F−1{Io(u)} =
N−1∑

u=0

Io(u) exp

[
j2π

N
(uw)

]
(C.1)

Equation C.1 is essentially equivalent to a random phasor sum. The intensity Io is

a collection of random variables where the phase is known (exactly zero) and the

magnitude is random but statistically independent of each other. To discover the

statistics of the transformation produced by Eqn. C.1, we will execute Goodman’s

random phasor sum procedures [17]. The real and imaginary parts of the Fourier

transformed data are defined as r and i, respectively.
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r(w) = Re[ F−1{Io} ] =
N−1∑

u=0

Io(u) cos

[
2πuw

N

]
(C.2)

i(w) = Im[ F−1{Io} ] =
N−1∑

u=0

Io(u) sin

[
2πuw

N

]
(C.3)

Next, the mean of the real and imaginary parts are computed. Because the

expected value of laser speckle is a constant (e.g. E[Io] = C), the expected value

of the real and imaginary parts, are two-dimensional Cosine and Sine transforms,

respectively, of a constant value. The mean of the real and imaginary parts are equal

except at w = 0,

E[r(w)] = CN2δ(w), (C.4)

E[i(w)] = 0 ∀ w. (C.5)

The variance of the real and imaginary parts are similarly computed. The au-

tocorrelation of the laser speckle is approximated by a delta function plus a constant,

due to assumed statistical independence and the second moment of the speckle also

equal to a constant (e.g. E[I2
0 ] = B),

E[Io(u)Io(v)] = C2 +Bδ(u− v). (C.6)

The variance of the real and imaginary parts are computed to be:
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var[r(w1, w2)] =
N−1∑

u=0

N−1∑

v=0

E[ Io(u)Io(v) ] cos

(
2πuw

N

)
cos

(
2πvw

N

)
− C2N4δ(w),

=





BN2 for w1 ∈ {0, N/2} ∧ w2 ∈ {0, N/2},
BN2

2
for w1 ∈ {0, N/2} ⊕ w2 ∈ {0, N/2},

BN2

4
else;

(C.7)

var[i(w1, w2)] =
N−1∑

u=0

N−1∑

v=0

E[ Io(u)Io(v) ] sin

(
2πuw

N

)
sin

(
2πvw

N

)
,

=





0 for w1 ∈ {0, N/2} ∨ w2 ∈ {0, N/2},
BN2

4
else.

(C.8)

Therefore, the variances of the real and imaginary parts are equal except for a small

number of points in the image,

var[r(w)] = var[i(w)] ∀ w ∋ {0, N/2}. (C.9)

Next, the correlation coefficient, ρri, for the real and imaginary parts is com-

puted to be zero everywhere due to orthogonality and are uncorrelated,

ρri(w) = E[r(u)i(v)] =
N−1∑

u=0

N−1∑

v=0

E [Io(u)Io(v)] cos

(
2πuw

N

)
sin

(
2πvw

N

)

= 0. (C.10)

Therefore, a majority of the Fourier transformed image points (∀ w ∋ {0, N/2})
are jointly distributed as circular complex Gaussian random variables. After the

DFT is taken on the laser speckle data, a second operation, magnitude squared, is

performed to finalize the transformation from laser speckle to noisy autocorrelation
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data. The magnitude squared operation transforms the circular complex Gaussian

random variables to an intensity distribution. The intensity distribution of circu-

lar complex Gaussian random variables obey exponential statistics [17]. The mean

of these exponential random variables is the autocorrelation of the true object as

discussed in Section 3.2. The few pixels in the image where the imaginary part dis-

appears is less than ten percent of the image. With the assumptions made above and

ignoring the center pixel where the peak of the autocorrelation occurs, a single frame

of noisy autocorrelation data can be well approximated as exponentially distributed

random variables.
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Appendix D. Single Channel, EM Phase Retrieval Algorithm

This appendix details the single channel, EM phase retrieval algorithm using Poisson

statistics. The result is nearly identical to the ML algorithm presented by Schulz

and Snyder [38] only differing by a scale factor. This algorithm is re-derived here

for completeness and comparison to the multi-channel EM algorithms developed in

Chapter IV.

The complete data, d̃k(y, x), is chosen such that it is related to the incomplete

data, dk(x) by

dk(x) =
∑

y

d̃k(y, x), (D.1)

where k denotes the data frame, x and y are two-dimensional spatial variables, and

the complete data is assumed to be independent and identically distributed Poisson

random variables. Knowing information about the observed, incomplete data, we

choose the mean of the complete data to be

E[d̃k(y, x)] = o(y)o(y + x). (D.2)

Because the complete data is chosen to be a Poisson random variable with

a known mean, we can completely describe the probability mass function of the

complete data.

P
[
d̃k(y, x)

]
=
∏

k

∏

x

∏

y

[o(y)o(y + x)]d̃k(y,x)

d̃k(y, x)!
exp{−o(y)o(y + x)} (D.3)

The observed incomplete data is described by its mean

133



E[dk(x)] =
∑

y

E[d̃k(y, x)]

=
∑

y

o(y)o(y + x) (D.4)

The log-likelihood function of the complete data, Lcd, is found by taking the

natural log of the probability mass function in Eqn. D.3.

Lcd(o) =
∑

k

∑

x

∑

y

{
d̃k(y, x) log

[
o(y)o(y + x)

]
− o(y)o(y + x) + A.T.

}
(D.5)

Expectation Step. The expectation step of the EM algorithm is

defined as the expectation of the complete data log-likelihood function conditioned

on the old object estimate (from the previous iteration), oold(y), and the incomplete

data, dk(x).

Q
def
= E[Lcd | oold, dk(x)]

=
∑

k

∑

y

∑

x

{
Eold

[
d̃k(y, x)

]
log
[
o(y)o(y + x)

]
− o(y)o(y + x) + A.T.

}
(D.6)

where Eold is the conditional expectation conditioned on the old estimates of o and

the incomplete data. K is the total number of frames and A.T. denotes another term

not a function of o.

For Poisson statistics, the conditional expectation on the complete data given

the incomplete data is detailed by Shepp and Vardi [42]:
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µ(y0, x)
def
=Eold[d̃k(y0, x)]

=
oold(y0)o

old(y0 + x)dk(x)∑
y o

old(y)oold(y + x)
. (D.7)

Maximization Step. The maximization step involves maximizing

the Q function with respect to the unknown parameter, o. We take the partial

derivative of Q(o|oold), set it equal to zero and solve for the object, o.

∂Q(o|oold)

∂o(y0)
=

∂

∂o(y0)

∑

k

∑

x

∑

y

{
µ(y, x) log[o(y)o(y + x)] − o(y)o(y + x)

}

=
∑

k

∑

x

∑

y

{
µ(y, x)

∂

∂o(y0)
log[o(y)o(y + x)] − ∂

∂o(y0)
o(y)o(y + x)

}

=
∑

k

∑

x

{
µ(y0, x)

o(y0)
+
µ(y0 − x, x)

o(y0)
−
[
o(y0 + x) + o(y0 − x)

]}

=
1

o(y0)

∑

k

∑

x

{
µ(y0, x) + µ(y0 − x, x)

}
− 2KSnew

o (D.8)

where Snew
o is the sum of the new object estimate defined as

Snew

o =
∑

x

onew(x). (D.9)

Setting Eqn. D.8 equal to zero and solving for the object, o, yields

onew(y0) =
1

2KSnew
o

∑

k

∑

x

{
µ(y0, x) + µ(y0 − x, x)

}
. (D.10)
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In order to simplify this expression, a few new terms will be defined. We will

let the average of the incomplete data be defined as the measured autocorrelation,

R̃o,

R̃o(x) =
1

K

K∑

k=1

dk(x). (D.11)

The autocorrelation of the old object estimate from the previous iteration will be

defined as

Rold

o (x) =
∑

y

oold(y)oold(y + x). (D.12)

Also, we will define the following parameter

Ψ(y0)
def
=

1

K

∑

k

∑

x

{
µ(yo, x) + µ(y0 − x, x)

}

=
1

K

∑

k

∑

x

{
oold(y0)o

old(y0 + x)dk(x)∑
y o

old(y)oold(y + x)
+
oold(y0)o

old(y0 − x)dk(x)∑
y o

old(y)oold(y + x)

}

= oold ·
[
oold ⋆

R̃o

Rold
o

+ oold ∗ R̃o

Rold
o

]
(y0) (D.13)

Substituting these parameters back into the expression for the object estimate

produces the following equation.

onew(y0) =
Ψ(y0)

2Snew
o

(D.14)
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Here, the expression for the new object estimate, onew, is a function of the old

object estimate, oold, and the incomplete data. Summing both sides of Eqn. D.14

provides an expression for Snew
o

Snew

o =

√
1

2

∑

y0

Ψ(yo) (D.15)

The iterative solution restated is

onew(y0) =
oold

2Snew
o

·
[
oold ⋆

R̃o

Rold
o

+ oold ∗ R̃o

Rold
o

]
(y0). (D.16)

This result, is identical to the original Schulz and Snyder ML algorithm [38] differing

only by a scaling parameter, Snew
o . The Schulz and Snyder ML algorithm uses the Sold

o

scale parameter. The Schulz and Snyder ML algorithm is detailed in Eqn. D.17.

onew(y0) =
oold

2Sold
o

·
[
oold ⋆

R̃o

Rold
o

+ oold ∗ R̃o

Rold
o

]
(y0) (D.17)
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